Previous Next Contents
Previous: Spring84 Next: Fall84

Preliminary Exam - Summer 1984



Problem 1   Show that if a subgroup $H$ of a group $G$ has just one left coset different from itself, then it is a normal subgroup of $G$.

Problem 2   Let % latex2html id marker 683
$\mathbb{Z}^{}$ be the ring of integers and % latex2html id marker 687
$\mbox{$\mathbb{Z}^{}$}[x]$ the polynomial ring over % latex2html id marker 689
$\mathbb{Z}^{}$. Show that

\begin{displaymath}x^6+539x^5-511x+847 \end{displaymath}

is irreducible in % latex2html id marker 693
$\mbox{$\mathbb{Z}^{}$}[x]$.

Problem 3   Let % latex2html id marker 726
$f: \mbox{$\mathbb{R}^{m}$} \to \mbox{$\mathbb{R}^{n}$}, \; n \geq 2$, be a linear transformation of rank $n-1$. Let $f(v) = (f_1(v),f_2(v),\ldots,f_n(v))$ for % latex2html id marker 734
$v \in\mbox{$\mathbb{R}^{m}$}$. Show that a necessary and sufficient condition for the system of inequalities $f_i(v)>0$, $i=1,\ldots,n$, to have no solution is that there exist real numbers $\lambda_i\geq 0$, not all zero, such that

\begin{displaymath}\sum_{i=1}^n\lambda_if_i=0. \end{displaymath}

Problem 4   Let

\begin{displaymath}A = \left( \begin{array}{cc}
a & b \\
c & d \end{array} \right)\end{displaymath}

be a real matrix with $a, b, c, d > 0$. Show that $A$ has an eigenvector

\begin{displaymath}
% latex2html id marker 769
\left( \begin{array}{c}
x \\
y \end{array} \right)\in \mbox{$\mathbb{R}^{2}$} \end{displaymath}

with $x, y > 0$.

Problem 5  
  1. Show that there is a unique analytic branch outside the unit circle of the function $f(z)=\sqrt{z^2+z+1}$ such that $f(t)$ is positive when $t>1$.

  2. Using the branch determined in Part 1, calculate the integral

    \begin{displaymath}\frac{1}{2\pi i}\int_{C_r}\frac{dz}{\sqrt{z^2+z+1}} \end{displaymath}

    where $C_r$ is the positively oriented circle $\vert z\vert=r$ and $r>1$.

Problem 6   Let $\rho > 0$. Show that for $n$ large enough, all the zeros of

\begin{displaymath}f_n(z) = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \cdots + \frac{1}{n!z^n} \end{displaymath}

lie in the circle $\vert z\vert<\rho$.

Problem 7   Let % latex2html id marker 857
$f:\mbox{$\mathbb{R}^{}$}\to\mbox{$\mathbb{R}^{}$}$ be $C^1$ and let

\begin{displaymath}\begin{array}{l}
u = f(x) \\
v = -y + xf(x). \end{array} \end{displaymath}

If $f'(x_0)\neq 0$, show that this transformation is locally invertible near $(x_0,y_0)$ and the inverse has the form

\begin{displaymath}\begin{array}{l}
x = g(u) \\
y = -v + ug(u). \end{array} \end{displaymath}

Problem 8   Let $\varphi(s)$ be a $C^2$ function on $[1,2]$ with $\varphi$ and $\varphi'$ vanishing at $s=1,2$. Prove that there is a constant $C>0$ such that for any $\lambda>1$,

\begin{displaymath}\left\vert\int_1^2e^{i\lambda x}\varphi(x)\,dx\right\vert \leq \frac{C}{\lambda^2}\cdot \end{displaymath}

Problem 9   Consider the solution curve $\left( x(t),y(t) \right)$ to the equations

\begin{eqnarray*}
\frac{dx}{dt} & = & 1 + \frac{1}{2}x^2\sin y \\
\frac{dy}{dt} & = & 3 - x^2
\end{eqnarray*}



with initial conditions $x(0)=0$ and $y(0)=0$. Prove that the solution must cross the line $x=1$ in the $xy$ plane by the time $t=2$.

Problem 10   Let $C^{1/3}$ be the set of real valued functions f on the closed interval $[0,1]$ such that
  1. $f(0)=0$;

  2. $\Vert f\Vert$ is finite, where by definition

    \begin{displaymath}\Vert f\Vert = \sup\left\{\frac{\vert f(x)-f(y)\vert}{\vert x-y\vert^{1/3}} \;\vert\; x\neq y \right\}. \end{displaymath}

Verify that $\Vert\cdot\Vert$ is a norm for the space $C^{1/3}$, and prove that $C^{1/3}$ is complete with respect to this norm.

Problem 11   Let $S_n$ denote the group of permutations of $n$ letters. Find four different subgroups of $S_4$ isomorphic to $S_3$ and nine isomorphic to $S_2$.

Problem 12   Let % latex2html id marker 997
$\mbox{\bf {F}}_q$ be a finite field with $q$ elements and let $V$ be an $n$-dimensional vector space over % latex2html id marker 1005
$\mbox{\bf {F}}_q$.
  1. Determine the number of elements in $V$.
  2. Let % latex2html id marker 1009
$GL_n(\mbox{\bf {F}}_q)$ denote the group of all $n\times n$ nonsingular matrices $A$ over % latex2html id marker 1015
$\mbox{\bf {F}}_q$. Determine the order of % latex2html id marker 1017
$GL_n(\mbox{\bf {F}}_q)$.
  3. Let % latex2html id marker 1019
$SL_n(\mbox{\bf {F}}_q)$ denote the subgroup of % latex2html id marker 1021
$GL_n(\mbox{\bf {F}}_q)$ consisting of matrices with determinant $1$. Find the order of % latex2html id marker 1025
$SL_n(\mbox{\bf {F}}_q)$.

Problem 13   Let $A$ be a 2$\times$2 matrix over % latex2html id marker 1063
$\mathbb{C}\,^{}$ which is not a scalar multiple of the identity matrix $I$. Show that any 2$\times$2 matrix $X$ over % latex2html id marker 1071
$\mathbb{C}\,^{}$ commuting with $A$ has the form $X=\alpha I+\beta A$, where % latex2html id marker 1079
$\alpha, \beta \in \mbox{$\mathbb{C}\,^{}$}$.

Problem 14   Suppose $V$ is an $n$-dimensional vector space over the field % latex2html id marker 1100
$\mbox{\bf {F}}$. Let $W\subset V$ be a subspace of dimension $r<n$. Show that

\begin{displaymath}W = \bigcap\,\left\{U\;\vert\; U\, is \, an \, (n-1)-dimensional\; subspace\;
of\; V\, and\;W \subset U\right\}.\end{displaymath}

Problem 15   Let % latex2html id marker 1126
$\mbox{$\mathbb{Z}^{}$}_3$ be the field of integers $\bmod 3$ and % latex2html id marker 1132
$\mbox{$\mathbb{Z}^{}$}_3[x]$ the corresponding polynomial ring. Decompose $x^3+x+2$ into irreducible factors in % latex2html id marker 1138
$\mbox{$\mathbb{Z}^{}$}_3[x]$.

Problem 16   Let $p(z)$ be a nonconstant polynomial with real coefficients such that for some real number $a$, $p(a)\neq 0$ but $p'(a)=
p''(a)=0$. Prove that the equation $p(z)=0$ has a nonreal root.

Problem 17   Suppose

\begin{displaymath}f(z) = \sum_{n=0}^{\infty}a_nz^n \end{displaymath}

has radius of convergence $R>0$. Show that

\begin{displaymath}h(z) = \sum_{n=0}^{\infty}\frac{a_nz^n}{n!} \end{displaymath}

is entire and that for $0<r<R$, there is a constant $M$ such that

\begin{displaymath}\vert h(z)\vert\leq Me^{\vert z\vert/r}. \end{displaymath}

Problem 18   Show that there is a unique continuous function % latex2html id marker 1198
$f:[0,1]\to\mbox{$\mathbb{R}^{}$}$ such that

\begin{displaymath}f(x) = \sin x + \int_0^1\frac{f(y)}{e^{x+y+1}}\,dy. \end{displaymath}

Problem 19   Let $x(t)$ be the solution of the differential equation

\begin{displaymath}x''(t)+8x'(t)+25x(t) = 2\cos t \end{displaymath}

with initial conditions $x(0)=0$ and $x'(0)=0$. Show that for suitable constants $\alpha$ and $\delta$,

\begin{displaymath}\lim_{t\to\infty}\left(x(t)-\alpha\cos(t-\delta)\right)=0. \end{displaymath}

Problem 20   Evaluate


\begin{displaymath}\int_{-\infty}^{\infty}\frac{x\sin x}{x^2+4x+20}\,dx\, . \end{displaymath}



Previous Next Contents
Previous: Spring84 Next: Fall84

Paulo Ney de Souza & Jorge-Nuno Silva
2000-08-10