Previous Next Contents
Previous: Summer84 Next: Spring85

Preliminary Exam - Fall 1984



Problem 1   Let $G$ be a group and $H$ a subgroup of index $n < \infty$. Prove or disprove the following statements:
  1. If $a \in G$, then $a^n \in H$.

  2. If $a \in G$, then for some $k$, $0 < k \leq n$, we have $a^k \in H$.

Problem 2   Let $A$ and $B$ be n$\times$n real matrices, and k a positive integer. Find

  1. \begin{displaymath}\lim_{t \to 0}\frac{1}{t} \left( (A + tB)^k - A^k \right) . \end{displaymath}


  2. \begin{displaymath}\left. \frac{d}{dt}\mathrm{tr}\,(A + tB)^k \right\vert _{t=0} . \end{displaymath}

Problem 3   Prove or supply a counterexample: If $f$ is a nondecreasing real valued function on $[0,1]$, then there is a sequence of continuous functions on $[0,1]$, $\{f_n\}$, such that for each $x \in [0,1]$,

\begin{displaymath}\lim_{n \to \infty}f_n(x) = f(x). \end{displaymath}

Problem 4   Evaluate

\begin{displaymath}\int_{0}^{\infty}\frac{x - \sin x}{x^3}\,dx\,. \end{displaymath}

Problem 5   Consider the differential equation

\begin{displaymath}\frac{dy}{dx} = 3xy + \frac{y}{1 + y^2}\cdot \end{displaymath}

Prove
  1. For each $n=1, 2, \ldots$, there is a unique solution $y = f_n(x)$ defined for $0 \leq x \leq 1$ such that $f_n(0) = 1/n$.

  2. $ \lim_{n \to \infty}f_n(1) = 0. $

Problem 6   Let $\gcd$ abbreviate greatest common divisor and $\mathrm{lcm}$ abbreviate least common multiple. For three nonzero integers a, b, c, show that

\begin{displaymath}\gcd\left\{a,\mathrm{lcm}\{b,c\}\right\}=\mathrm{lcm}\left\{\gcd \{a,b\},
\gcd \{a,c\} \right\}. \end{displaymath}

Problem 7   Let % latex2html id marker 785
$\mathbb{R}^{}$ $[x_1,\ldots,x_n]$ be the polynomial ring over the real field % latex2html id marker 789
$\mathbb{R}^{}$ in the $n$ variables $x_1,\ldots,x_n$. Let the matrix $A$ be the $n \times n$ matrix whose $i^{th}$ row is $(1, x_i, x_i^2, \ldots ,x_i^{n-1})$, $i = 1, \ldots , n$. Show that


\begin{displaymath}{\det A} = \prod_{i > j}(x_i - x_j) . \end{displaymath}

Problem 8   Let $a$, $b$, $c$, and $d$ be real numbers, not all zero. Find the eigenvalues of the following 4$\times $4 matrix and describe the eigenspace decomposition of % latex2html id marker 837
$\mathbb{R}^{4}$:

\begin{displaymath}
\left( \begin{array}{cccc}
aa & ab & ac & ad \\
ba & bb & b...
...\
ca & cb & cc & cd \\
da & db & dc & dd\end{array} \right).
\end{displaymath}

Problem 9   Let $f$ and $g$ be analytic functions in the open unit disc, and let $C_r$ denote the circle with center $0$ and radius $r$, oriented counterclockwise.
  1. Prove that the integral

    \begin{displaymath}\frac{1}{2\pi i}\int_{C_r}\frac{1}{w}f(w)g\left(\frac{z}{w}\right)\,dw \end{displaymath}

    is independent of $r$ as long as $\vert z\vert< r < 1$ and that it defines an analytic function $h(z)$, $\vert z\vert< 1$.

  2. Prove or supply a counterexample: If $f \not\equiv 0$ and $g \not\equiv 0$, then $h \not\equiv 0$.

Problem 10   Prove or supply a counterexample:
  1. If $f$ and $g$ are $C^1$ real valued functions on $(0,1)$, if

    \begin{displaymath}\lim_{x \to 0}f(x) = \lim_{x \to 0}g(x) = 0, \end{displaymath}

    if $g$ and $g'$ never vanish, and if

    \begin{displaymath}\lim_{x \to 0}\frac{f'(x)}{g'(x)} = c, \end{displaymath}

    then

    \begin{displaymath}\lim_{x \to 0}\frac{f(x)}{g(x)} = c. \end{displaymath}

  2. Do the same question for complex valued $f$ and $g$.

Problem 11   Show that all groups of order $\leq 5$ are commutative. Give an example of a noncommutative group of order $6$.

Problem 12   Let $\theta$ and $\varphi$ be fixed, $0 \leq \theta \leq 2\pi$, $0 \leq \varphi \leq 2\pi$ and let $R$ be the linear transformation from % latex2html id marker 994
$\mathbb{R}^{3}$ to % latex2html id marker 996
$\mathbb{R}^{3}$ whose matrix in the standard basis $\vec{\imath}$, $\vec{\jmath}$, and $\vec{k}$ is

\begin{displaymath}\left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos\theta & \sin\theta \\
0 & -\sin\theta & \cos\theta \end{array} \right)\,. \end{displaymath}

Let $S$ be the linear transformation of % latex2html id marker 1006
$\mathbb{R}^{3}$ to % latex2html id marker 1008
$\mathbb{R}^{3}$ whose matrix with respect to the basis

\begin{displaymath}\left\{\frac{1}{\sqrt{2}}(\vec{\imath} + \vec{k}),
\vec{\jmath},
\frac{1}{\sqrt{2}}(\vec{\imath} - \vec{k})\right\} \end{displaymath}

is

\begin{displaymath}\left( \begin{array}{ccc}
\cos\varphi & \sin\varphi & 0 \\
-...
...\varphi & \cos\varphi & 0 \\
0 & 0 & 1 \end{array} \right)\,. \end{displaymath}

Prove that $T = R\circ S$ leaves a line invariant.

Problem 13   Show that if $f$ is a homeomorphism of $[0,1]$ onto itself, then there is a sequence $\{p_n\}$, $n = 1, 2, 3, \ldots\,$ of polynomials such that $p_n \to f$ uniformly on $[0,1]$ and each $p_n$ is a homeomorphism of $[0,1]$ onto itself.

Problem 14   Evaluate

  1. \begin{displaymath}\int_{-\infty}^{\infty}\frac{dx}{(1+x+x^2)^2} \end{displaymath}


  2. \begin{displaymath}\int_{0}^{2\pi}\frac{d\theta}{a + \sin \theta}
\quad where \quad a>1. \end{displaymath}

Problem 15   Consider the differential equation

\begin{displaymath}\frac{dx}{dt} = y, \hspace{.1in}
\frac{dy}{dt} = -ay - x^3 - x^5, \;\; where\;\; a > 0. \end{displaymath}

  1. Show that

    \begin{displaymath}F(x,y) = \frac{y^2}{2} + \frac{x^4}{4} + \frac{x^6}{6} \end{displaymath}

    decreases along solutions.

  2. Show that for any $\varepsilon > 0$, there is a $\delta > 0$ such that whenever
    $\Vert \left( x(0), y(0) \right)\Vert < \delta$, there is a unique solution $\left( x(t), y(t) \right)$ of the given equations with the initial condition $\left( x(0), y(0) \right)$ which is defined for all $t \geq 0$ and satisfies $\Vert \left( x(t), y(t) \right) \Vert < \varepsilon$.

Problem 16   Let $a$ be an element in a field % latex2html id marker 1116
$\mbox{\bf {F}}$ and let $p$ be a prime. Assume a is not a $p^{th}$ power. Show that the polynomial $x^p-a$ is irreducible in % latex2html id marker 1124
$\mbox{\bf {F}}[x]$.

Problem 17   Let $M$ be the $n\times n$ matrix over a field % latex2html id marker 1144
$\mbox{\bf {F}}$ all of whose entries are equal to $1$. Find the Jordan Canonical Form of $M$ and discuss the extent to which the Jordan form depends on the characteristic of the field % latex2html id marker 1150
$\mbox{\bf {F}}$.

Problem 18   Let $P_n$ be the vector space of all real polynomials with degrees at most n. Let $D:P_n \to P_n$ be given by differentiation: $D(p) = p'$. Let $\pi$ be a real polynomial. What is the minimal polynomial of the transformation $\pi(D)$?

Problem 19   Prove or supply a counterexample: If $f$ is a continuous complex valued function defined on a connected open subset of the complex plane and if $f^2$ is analytic, then $f$ is analytic.

Problem 20   Let $f$ be a $C^2$ function on the real line. Assume $f$ is bounded with bounded second derivative. Let

\begin{displaymath}
% latex2html id marker 1199
A=\sup_{x \in \mbox{$\mathbb{R}...
...{.1in}
B=\sup_{x \in \mbox{$\mathbb{R}^{}$}}\vert f''(x)\vert. \end{displaymath}

Prove that

\begin{displaymath}
% latex2html id marker 1200
\sup_{x \in \mbox{$\mathbb{R}^{}$}}\vert f'(x)\vert \leq 2\sqrt{AB}. \end{displaymath}



Previous Next Contents
Previous: Summer84 Next: Spring85

Paulo Ney de Souza & Jorge-Nuno Silva
2000-08-10