Previous Next Contents
Previous: Fall84 Next: Summer85

Preliminary Exam - Spring 1985



Problem 1   Let $f(x)$, $0\leq x<\infty$, be continuous, differentiable, with $f(0) = 0$, and that $f'(x)$ is an increasing function of $x$ for $x \geq 0$. Prove that

\begin{displaymath}g(x) = \left\{ \begin{array}{ll}
f(x)/x, & x > 0 \\
f'(0), & x = 0
\end{array} \right. \end{displaymath}

is an increasing function of $x$.

Problem 2   In a commutative group $G$, let the element $a$ have order $r$, let $b$ have order $s\; (r, s < \infty )$, and assume that the greatest common divisor of $r$ and $s$ is $1$. Show that $ab$ has order $rs$.

Problem 3   Show that a necessary and sufficient condition for three points $a$, $b$, and $c$ in the complex plane to form an equilateral triangle is that

\begin{displaymath}a^2+b^2+c^2 = bc+ca+ab.\end{displaymath}

Problem 4   Let $R>1$ and let $f$ be analytic on $\vert z\vert<R$ except at $z=1$, where $f$ has a simple pole. If

\begin{displaymath}f(z) = \sum_{n=0}^{\infty}a_nz^n \qquad (\vert z\vert < 1) \end{displaymath}

is the Maclaurin series for $f$, show that $\lim_{n\to\infty}a_n$ exists.

Problem 5   Factor $x^4+x^3+x+3$ completely in % latex2html id marker 745
$\mbox{$\mathbb{Z}^{}$}_5[x]$.

Problem 6   Let $A$ and $B$ be two $n\times n$ self-adjoint (i.e., Hermitian) matrices over % latex2html id marker 763
$\mathbb{C}\,^{}$ such that all eigenvalues of $A$ lie in $[a,a']$ and all eigenvalues of $B$ lie in $[b,b']$. Show that all eigenvalues of $A + B$ lie in $[a+b,a'+b']$.

Problem 7   Prove that

\begin{displaymath}\int_0^{\infty}e^{-x^2}\cos (2bx)\,dx = \frac{1}{2}\sqrt{\pi}e^{-b^2}. \end{displaymath}

What restrictions, if any, need be placed on $b$?

Problem 8   Let $h>0$ be given. Consider the linear difference equation

\begin{displaymath}(*) \hspace{.2in} \frac{y \left( (n+2)h \right)-2y\left((n+1)...
...ght)+y(nh)}{h^2}= -y(nh),
\hspace{.15in} n = 0, 1, 2, \ldots . \end{displaymath}

(Note the analogy with the differential equation $y''= -y$.)
  1. Find the general solution of $(*)$ by trying suitable exponential substitutions.

  2. Find the solution with $y(0)=0$ and $y(h)=h$. Denote it by $S_h(nh)$,
    $n = 1, 2, \ldots$.

  3. Let $x$ be fixed and $h=x/n$. Show that

    \begin{displaymath}\lim_{n\to\infty}S_{x/n}(nx/n)=\sin x \, . \end{displaymath}

Problem 9   Define the function $\zeta$ by

\begin{displaymath}\zeta(x) = \sum_{n=1}^{\infty}\frac{1}{n^x}\cdot \end{displaymath}

Prove that $\zeta(x)$ is defined and has continuous derivatives of all orders in the interval $1<x<\infty$.

Problem 10   For arbitrary elements $a$, $b$, and $c$ in a field % latex2html id marker 874
$\mbox{\bf {F}}$, compute the minimal polynomial of the matrix

\begin{displaymath}\left( \begin{array}{ccc}
0 & 0 & a \\
1 & 0 & b \\
0 & 1 & c\end{array} \right). \end{displaymath}

Problem 11   Let % latex2html id marker 910
$\mbox{\bf {F}} = \{a+b\sqrt[3]{2}+c\sqrt[3]{4} \;\vert\; a, b, c \in \mbox{$\mathbb{Q}\,^{}$}\}$. Prove that % latex2html id marker 912
$\mbox{\bf {F}}$ is a field and each element in % latex2html id marker 914
$\mbox{\bf {F}}$ has a unique representation as $a+b\sqrt[3]{2}+c\sqrt[3]{4}$ with % latex2html id marker 920
$a, b, c \in \mbox{$\mathbb{Q}\,^{}$}$. Find $\left( 1-\sqrt[3]{2} \, \right)^{-1}$ in % latex2html id marker 924
$\mbox{\bf {F}}$.

Problem 12   Prove that

\begin{displaymath}\int_0^{\infty}\frac{x^{\alpha -1}}{1+x}\,dx =
\frac{\pi}{\sin \pi\alpha } \cdot \end{displaymath}

What restrictions must be placed on $\alpha$?

Problem 13   Prove that for any % latex2html id marker 963
$a\in\mbox{$\mathbb{C}\,^{}$}$ and any integer $n\geq 2$, the equation $1+z+az^n=0$ has at least one root in the disc $\vert z\vert\leq~2$.

Problem 14   Show that

\begin{displaymath}I = \int_0^{\pi}\log (\sin x)\,dx \end{displaymath}

converges as an improper Riemann integral. Evaluate $I$.

Problem 15   Let $\displaystyle{\zeta = e^{\frac{2\pi i}{7}}}$ be a primitive $7^{th}$ root of unity. Find a cubic polynomial with integer coefficients having $\alpha = \zeta + \zeta^{-1}$ as a root.

Problem 16   Let f be continuous on % latex2html id marker 1014
$\mathbb{R}^{}$, and let

\begin{displaymath}f_n(x) = \frac{1}{n}\sum_{k=0}^{n-1}f\left(x+\frac{k}{n}\right). \end{displaymath}

Prove that $f_n(x)$ converges uniformly to a limit on every finite interval $[a,b]$.

Problem 17   Let $v_1$ and $v_2$ be two real valued continuous functions on % latex2html id marker 1044
$\mathbb{R}^{}$ such that $v_1(x)<v_2(x)$ for all % latex2html id marker 1050
$x\in\mbox{$\mathbb{R}^{}$}$. Let $\varphi_1(t)$ and $\varphi_2(t)$ be, respectively, solutions of the differential equations

\begin{displaymath}\frac{dx}{dt} =v_1(x)\quad and \quad \frac{dx}{dt} =v_2(x) \end{displaymath}

for $a<t<b$. If $\varphi_1(t_0)=\varphi_2(t_0)$ for some $t_0\in (a,b)$, show that $\varphi_1(t)\leq\varphi_2(t)$ for all $t\in (t_0,b)$.

Problem 18   Let $A$ and $B$ be two $n\times n$ self-adjoint (i.e., Hermitian) matrices over % latex2html id marker 1084
$\mathbb{C}\,^{}$ and assume $A$ is positive definite. Prove that all eigenvalues of AB are real.

Problem 19   Let % latex2html id marker 1100
$\mbox{\bf {F}}$ be a finite field. Give a complete proof of the fact that the number of elements of % latex2html id marker 1102
$\mbox{\bf {F}}$ is of the form $p^r$, where $p\geq 2$ is a prime number and $r$ is an integer $\geq 1$.

Problem 20   Let $f(z)$ be an analytic function that maps the open disc $\vert z\vert<1$ into itself. Show that $\vert f'(z)\vert\leq 1/(1-\vert z\vert^2)$.



Previous Next Contents
Previous: Fall84 Next: Summer85

Paulo Ney de Souza & Jorge-Nuno Silva
2000-08-10