Previous Next Contents
Previous: Spring80 Next: Fall80

Preliminary Exam - Summer 1980



Problem 1   Exhibit a real 3$\times $3 matrix having minimal polynomial $(t^2+1)(t-10)$, which, as a linear transformation of % latex2html id marker 663
$\mathbb{R}^{3}$, leaves invariant the line $L$ through $(0,0,0)$ and $(1,1,1)$ and the plane through $(0,0,0)$ perpendicular to $L$.

Problem 2   Which of the following matrix equations have a real matrix solution X? (It is not necessary to exhibit solutions.)

  1. \begin{displaymath}X^3 = \left( \begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
2 & 3 & 0 \end{array} \right), \end{displaymath}


  2. \begin{displaymath}2X^5 + X=\left( \begin{array}{ccc}
3 & 5 & 0 \\
5 & 1 & 9 \\
0 & 9 & 0 \end{array} \right), \end{displaymath}


  3. \begin{displaymath}X^6 + 2X^4 + 10X=\left( \begin{array}{cc}
0 & -1 \\
1 & 0 \end{array} \right), \end{displaymath}


  4. \begin{displaymath}X^4 = \left( \begin{array}{ccc}
3 & 4 & 0 \\
0 & 3 & 0 \\
0 & 0 & -3 \end{array} \right). \end{displaymath}

Problem 3   Let $T:V \to V$ be an invertible linear transformation of a vector space $V$. Denote by $G$ the group of all maps $f_{k,a}: V \to V$ where % latex2html id marker 750
$k \in \mbox{$\mathbb{Z}^{}$}$, $a \in V$, and for $x \in V$,

\begin{displaymath}f_{k,a}(x) = T^kx + a \hspace{.2in} (x \in V). \end{displaymath}

Prove that the commutator subgroup $G'$ of $G$ is isomorphic to the additive group of the vector space $(T-I)V$, the image of $T-I$. ($G'$ is generated by all $ghg^{-1}h^{-1}$, $g$ and $h$ in $G$.)

Problem 4   Let $G$ be a finite group and $H\subset G$ a subgroup.
  1. Show that the number of subgroups of $G$ of the form $xHx^{-1}$ for some $x\in G$ is $\leq$ the index of $H$ in $G$.
  2. Prove that some element of $G$ is not in any subgroup of the form $xHx^{-1}$, $x\in G$.

Problem 5   Consider the differential equations

\begin{displaymath}\frac{dx}{dt} = -x + y, \hspace{.2in}
\frac{dy}{dt} = \log(20+x) - y. \end{displaymath}

Let $x(t)$ and $y(t)$ be a solution defined for all $t\geq 0$ with $x(0)>0$ and $y(0)>0$. Prove that $x(t)$ and $y(t)$ are bounded.

Problem 6   Let $C$ denote the positively oriented circle $\vert z\vert = 2$,
% latex2html id marker 849
$z\in \mbox{$\mathbb{C}\,^{}$}$. Evaluate the integral

\begin{displaymath}\int_C\sqrt{z^2-1}\,dz \end{displaymath}

where the branch of the square root is chosen so that $\sqrt{2^2-1}>0.$

Problem 7   Exhibit a conformal map from the set % latex2html id marker 872
$\{z \in \mbox{$\mathbb{C}\,^{}$} \;\vert\; \vert z\vert<1,
\Re z > 0 \}$ onto % latex2html id marker 876
$\mathbb{D}=\{z\in\mbox{$\mathbb{C}\,^{}$}\;\vert\;\vert z\vert<1\}$.

Problem 8   Give an example of a subset of % latex2html id marker 892
$\mathbb{R}^{}$ having uncountably many connected components. Can such a subset be open? Closed?

Problem 9   For each % latex2html id marker 914
$(a,b,c) \in \mbox{$\mathbb{R}^{3}$}$, consider the series

\begin{displaymath}\sum_{n=3}^{\infty}\frac{a^n}{n^b(\log n)^c} \cdot \end{displaymath}

Determine the values of $(a,b,c)$ for which the series
  1. converges absolutely;

  2. converges but not absolutely;

  3. diverges.

Problem 10   Let % latex2html id marker 956
$f:\mbox{$\mathbb{R}^{n}$} \to \mbox{$\mathbb{R}^{}$}$ be a function whose partial derivatives of order $\leq 2$ are everywhere defined and continuous.
  1. Let % latex2html id marker 962
$a \in \mbox{$\mathbb{R}^{n}$}$ be a critical point of f (i.e., $\frac{\partial f}{\partial x_j}(a)=0, \; i = 1,\ldots,n$). Prove that a is a local minimum provided the Hessian matrix

    \begin{displaymath}\left( \frac{\partial^2f}{\partial x_i \partial x_j} \right) \end{displaymath}

    is positive definite at $x=a$.

  2. Assume the Hessian matrix is positive definite at all x. Prove that f has, at most, one critical point.

Problem 11   Prove that every finite group is isomorphic to
  1. A group of permutations;

  2. A group of even permutations.

Problem 12   Let % latex2html id marker 1013
$S \subset \mbox{$\mathbb{R}^{3}$}$ denote the ellipsoidal surface defined by

\begin{displaymath}2x^2+(y-1)^2+(z-10)^2=1. \end{displaymath}

Let % latex2html id marker 1017
$T \subset \mbox{$\mathbb{R}^{3}$}$ be the surface defined by

\begin{displaymath}z = \frac{1}{x^2+y^2+1} \cdot \end{displaymath}

Prove that there exist points $p \in S,\; q \in T$, such that the line $\overline{pq}$ is perpendicular to $S$ at $p$ and to $T$ at $q$.

Problem 13   Let $\mathfrak{J}$ be the ideal in the ring % latex2html id marker 1054
$\mbox{$\mathbb{Z}^{}$}[x]$ (of polynomials with integer coefficients) generated by $x-5$ and $14$. Find % latex2html id marker 1062
$n \in \mbox{$\mathbb{Z}^{}$}$ such that $0\leq n\leq 13$ and $(x^3+2x+1)^{50}-n \in \mathfrak{J}$.

Problem 14   Let $A$ and $B$ be real 2$\times$2 matrices with $A^2=B^2 =I,\;
AB + BA=0$. Prove there exists a real nonsingular matrix $T$ with

\begin{displaymath}TAT^{-1} = \left( \begin{array}{cc}
1 & 0 \\
0 & -1 \end{arr...
...
\left( \begin{array}{cc}
0 & 1 \\
1 & 0 \end{array} \right). \end{displaymath}

Problem 15   Let $E$ be a finite-dimensional vector space over a field % latex2html id marker 1119
$\mbox{\bf {F}}$. Suppose $B:E \times $E % latex2html id marker 1123
$ \to \mbox{\bf {F}}$ is a bilinear map (not necessarily symmetric). Define subspaces

\begin{displaymath}E_1=\{x \in E \;\vert\; B(x,y) = 0 \; for\;\; all\; y \in E\}, \end{displaymath}


\begin{displaymath}E_2=\{y \in E \;\vert\; B(x,y) = 0 \; for\;\; all\; x \in E\} \end{displaymath}

Prove that $\dim E_1=\dim E_2$.

Problem 16   Let $(a_n)$ be a sequence of nonzero real numbers. Prove that the sequence of functions % latex2html id marker 1153
$f_n : \mbox{$\mathbb{R}^{}$} \to \mbox{$\mathbb{R}^{}$}$

\begin{displaymath}f_n(x) = \frac{1}{a_n}\sin(a_nx) + \cos(x+a_n) \end{displaymath}

has a subsequence converging to a continuous function.

Problem 17   Let % latex2html id marker 1175
$f:\mbox{$\mathbb{R}^{}$}\to\mbox{$\mathbb{R}^{}$}$ be monotonically increasing (perhaps discontinuous). Suppose $0<f(0)$ and $f(100)<100$. Prove $f(x)=x$ for some $x$.

Problem 18   How many zeros does the complex polynomial

\begin{displaymath}3z^9 + 8z^6 + z^5 + 2z^3 + 1 \end{displaymath}

have in the annulus $1 < \vert z\vert < 2$?

Problem 19   Let $f$ be a meromorphic function on % latex2html id marker 1211
$\mathbb{C}\,^{}$ which is analytic in a neighborhood of $0$. Let its Maclaurin series be

\begin{displaymath}\sum_{k=0}^{\infty}a_kz^k \end{displaymath}

with all $a_k \geq 0$. Suppose there is a pole of modulus $r>0$ and no pole has modulus $< r$. Prove there is a pole at $z=r$.

Problem 20   Prove that the initial value problem

\begin{displaymath}\frac{dx}{dt} = 3x+85\cos x, \hspace{.2in} x(0) = 77 \end{displaymath}

has a solution $x(t)$ defined for all % latex2html id marker 1240
$t \in \mbox{$\mathbb{R}^{}$}$.



Previous Next Contents
Previous: Spring80 Next: Fall80

Paulo Ney de Souza & Jorge-Nuno Silva
2000-08-10