Previous Next Contents
Previous: Fall95 Next: Fall96

Preliminary Exam - Spring 1996



Problem 1   Compute

\begin{displaymath}L = \lim_{n\to \infty} \left( n^n \over n! \right)^{1/n}. \end{displaymath}

Problem 2   Let % latex2html id marker 670
$K \subset \mbox{$\mathbb{R}^{n}$}$ be compact and $\lbrace B_j \rbrace_{j=1}^\infty$ be a sequence of open balls which covers $K$. Prove that there is $\varepsilon > 0$ such that every $\varepsilon$-ball centered at a point of $K$ is contained in one of the balls $B_j$.

Problem 3   Compute

\begin{displaymath}I = \int_0^{2\pi} {d\theta \over 2+\cos \theta} . \end{displaymath}

Problem 4   Let $r < 1 < R$. Show that for all sufficiently small $\varepsilon >0$, the polynomial

\begin{displaymath}p(z)= \varepsilon z^7 + z^2 + 1 \end{displaymath}

has exactly five roots (counted with their multiplicities) inside the annulus

\begin{displaymath}r\varepsilon^{-1/5} < \vert z\vert < R \varepsilon^{-1/5}. \end{displaymath}

Problem 5   Prove or disprove: For any 2$\times $2 matrix $A$ over % latex2html id marker 722
$\mbox{$\mathbb{C}\,^{}$}$, there is a 2$\times $2 matrix $B$ such that $A=B^2$.

Problem 6   If a finite homogeneous system of linear equations with rational coefficients has a nonzero complex solution, need it have a nonzero rational solution? Prove or give a counterexample.

Problem 7   Prove that $f(x)=x^4+x^3+x^2+6x+1$ is irreducible over % latex2html id marker 748
$\mbox{$\mathbb{Q}\,^{}$}$.

Problem 8   Determine the rightmost decimal digit of

\begin{displaymath}A = 17^{17^{17}}. \end{displaymath}

Problem 9   Exhibit infinitely many pairwise nonisomorphic quadratic extensions of % latex2html id marker 770
$\mbox{$\mathbb{Q}\,^{}$}$ and show they are pairwise nonisomorphic.

Problem 10   Show that a positive constant $t$ can satisfy

\begin{displaymath}e^x > x^t \quad for \; all \quad x > 0 \end{displaymath}

if and only if $t<e$.

Problem 11   Suppose $\varphi$ is a $C^1$ function on % latex2html id marker 800
$\mbox{$\mathbb{R}^{}$}$ such that

\begin{displaymath}\varphi(x) \to a \quad and \quad \varphi^\prime(x) \to b \quad as \quad
x \to \infty. \end{displaymath}

Prove or give a counterexample: $b$ must be zero.

Problem 12   Let $M_{2 \times 2}$ be the space of 2$\times $2 matrices over % latex2html id marker 835
$\mbox{$\mathbb{R}^{}$}$, identified in the usual way with % latex2html id marker 839
$\mbox{$\mathbb{R}^{4}$}$. Let the function $F$ from $M_{2 \times 2}$ into $M_{2 \times 2}$ be defined by

\begin{displaymath}F(X) = X + X^2. \end{displaymath}

Prove that the range of $F$ contains a neighborhood of the origin.

Problem 13   Let $f=u+iv$ be analytic in a connected open set $D$, where $u$ and $v$ are real valued. Suppose there are real constants $a$, $b$ and $c$ such that $a^2+b^2 \not= 0$ and

\begin{displaymath}au+bv=c\end{displaymath}

in $D$. Show that $f$ is constant in $D$.

Problem 14   Suppose % latex2html id marker 894
$f\colon [0,1]\to \mbox{$\mathbb{C}\,^{}$}$ is continuous. Show that

\begin{displaymath}g(z) = \int_0^1 f(t) e^{tz^2} dt \end{displaymath}

defines a function $g$ that is analytic everywhere in the complex plane.

Problem 15   Suppose that $A$ and $B$ are real matrices such that $A^t=A$,

\begin{displaymath}v^t A v \ge 0\end{displaymath}

for all % latex2html id marker 920
$v \in \mbox{$\mathbb{R}^{n}$}$ and

\begin{displaymath}AB + BA = 0. \end{displaymath}

Show that $AB=BA=0$ and give an example where neither $A$ nor $B$ is zero.

Problem 16   Let $A$ be the $n \times n$ matrix which has zeros on the main diagonal and ones everywhere else. Find the eigenvalues and eigenspaces of $A$ and compute $\det(A)$.

Problem 17   Let $G$ be the group of 2$\times $2 matrices with determinant $1$ over the four-element field % latex2html id marker 960
$\mbox{\bf {F}}$. Let $S$ be the set of lines through the origin in % latex2html id marker 964
$\mbox{\bf {F}}^2$. Show that $G$ acts faithfully on $S$. (The action is faithful if the only element of $G$ which fixes every element of $S$ is the identity.) _group action, faithful

Problem 18   Let $G$ and $H$ be finite groups of relatively prime orders. Show that the automorphism group $\mathrm{Aut}(G\times H)$ is isomorphic to the direct product of $\mathrm{Aut}(G)$ and $\mathrm{Aut}(H)$.



Previous Next Contents
Previous: Fall95 Next: Fall96

Paulo Ney de Souza & Jorge-Nuno Silva
2000-08-10