Previous Next Contents
Previous: Fall85 Next: Fall86

Preliminary Exam - Spring 1986



Problem 1   Let $e = (a, b, c)$ be a unit vector in % latex2html id marker 670
$\mathbb{R}^{3}$ and let ${T}$ be the linear transformation on % latex2html id marker 674
$\mathbb{R}^{3}$ of rotation by $180^{\circ}$ about e. Find the matrix for ${T}$ with respect to the standard basis.

Problem 2   Let f be a continuous real valued function on % latex2html id marker 695
$\mathbb{R}^{}$ such that

\begin{displaymath}f(x)=f(x+1)=f\left(x+\sqrt{2}\right) \end{displaymath}

for all x. Prove that f is constant.

Problem 3   Let $C$ be a simple closed contour enclosing the points $0, 1, 2, \ldots, k$ in the complex plane, with positive orientation. Evaluate the integrals

\begin{displaymath}I_k = \int_C\frac{dz}{z(z-1)\cdots(z-k)}, \hspace{.2in}
k=0,1, \ldots, \end{displaymath}


\begin{displaymath}J_k = \int_C\frac{(z-1)\cdots(z-k)}{z}\,dz, \hspace{.2in}
k = 0, 1, \ldots .\end{displaymath}

Problem 4   Let $f$ be a positive differentiable function on $(0,\infty)$. Prove that

\begin{displaymath}\lim_{\delta \to 0} \left( \frac{f(x+\delta x)}
{f(x)} \right)^{1/\delta} \end{displaymath}

exists (finitely) and is nonzero for each x.

Problem 5   Prove that there exists only one automorphism of the field of real numbers; namely the identity automorphism.

Problem 6   Let $V$ be a finite-dimensional vector space and $A$ and $B$ two linear transformations of $V$ into itself such that $A^2=B^2=0$ and
$AB + BA=I$.
  1. Prove that if $N_A$ and $N_B$ are the respective null spaces of $A$ and $B,$ then $N_A=AN_B$, $N_B=BN_A$, and $V=N_A \oplus N_B$.
  2. Prove that the dimension of $V$ is even.
  3. Prove that if the dimension of $V$ is $2$, then $V$ has a basis with respect to which $A$ and $B$ are represented by the matrices

    \begin{displaymath}\left( \begin{array}{cc}
0 & 1 \\
0 & 0 \end{array} \right)\...
...
\left( \begin{array}{cc}
0 & 0 \\
1 & 0 \end{array} \right). \end{displaymath}

Problem 7   For $\lambda$ a real number, find all solutions of the integral equations

\begin{displaymath}\varphi(x) = e^x + \lambda\int_0^xe^{(x-y)}\varphi(y)\,dy,
\hspace{.2in} 0 \leq x \leq 1, \end{displaymath}


\begin{displaymath}\psi(x) = e^x + \lambda\int_0^1e^{(x-y)}\psi(y)\,dy,
\hspace{.2in} 0 \leq x \leq 1.\end{displaymath}

Problem 8   Let the 3$\times$3 matrix function $A$ be defined on the complex plane by

\begin{displaymath}A(z) =
\left( \begin{array}{ccc}
4z^2 & 1 & -1 \\
-1 & 2z^2 & 0 \\
3 & 0 & 1\end{array} \right). \end{displaymath}

How many distinct values of $z$ are there such that $\vert z\vert<1$ and $A(z)$ is not invertible?

Problem 9   Let % latex2html id marker 847
$\mathbb{Z}^{2}$ be the group of lattice points in the plane (ordered pairs of integers, with coordinatewise addition as the group operation). Let $H_1$ be the subgroup generated by the two elements $(1,2)$ and $(4,1)$, and $H_2$ the subgroup generated by the two elements $(3,2)$ and $(1,3)$. Are the quotient groups % latex2html id marker 863
$G_1 = \mbox{$\mathbb{Z}^{2}$}/H_1$ and % latex2html id marker 867
$G_2 = \mbox{$\mathbb{Z}^{2}$}/H_2$ isomorphic?

Problem 10   Suppose addition and multiplication are defined on % latex2html id marker 896
$\mathbb{C}\,^{n}$, complex $n$-space, coordinatewise, making % latex2html id marker 900
$\mathbb{C}\,^{n}$ into a ring. Find all ring homomorphisms of % latex2html id marker 902
$\mathbb{C}\,^{n}$ onto % latex2html id marker 904
$\mathbb{C}\,^{}$.

Problem 11   Let the complex valued functions $f_n$, % latex2html id marker 946
$n \in \mbox{$\mathbb{Z}^{}$}$, be defined on % latex2html id marker 948
$\mathbb{R}^{}$ by _function,>orthonormal

\begin{displaymath}f_n(x) = \pi^{-1/2}(x-i)^n/(x+i)^{n+1}. \end{displaymath}

Prove that these functions are orthonormal; that is,

\begin{displaymath}
% latex2html id marker 939
\int_{-\infty}^{\infty}f_m(x)\ov...
...m{if} & m=n \\
0 & \mathrm{if} & m\neq n.
\end{array} \right. \end{displaymath}

Problem 12   Let $f$ be a real valued continuous function on % latex2html id marker 982
$\mathbb{R}^{}$ satisfying the mean value inequality below:

\begin{displaymath}
% latex2html id marker 978
f(x) \leq \frac{1}{2h}\int_{x-h}...
...hspace{.2in} x \in \mbox{$\mathbb{R}^{}$}, \hspace{.2in} h > 0.\end{displaymath}

Prove:
  1. The maximum of $f$ on any closed interval is assumed at one of the endpoints.

  2. $f$ is convex.
_function,>convex

Problem 13   Let $S$ be a nonempty commuting set of $n\times n$ complex matrices $(n\geq 1)$. Prove that the members of $S$ have a common eigenvector.

Problem 14   Let $K$ be a compact subset of % latex2html id marker 1020
$\mathbb{R}^{n}$ and $\{B_j\}$ a sequence of open balls that covers $K$. Prove that there is a positive number $\varepsilon$ such that each $\varepsilon$-ball centered at a point of $K$ is contained in one of the balls $B_j$.

Problem 15   Consider % latex2html id marker 1052
$\mathbb{R}^{2}$ be equipped with the Euclidean metric
$d(x,y) = \Vert x-y\Vert$. Let $T$ be an isometry of % latex2html id marker 1058
$\mathbb{R}^{2}$ into itself. Prove that $T$ can be represented as $T(x) = a + U(x)$, where a is a vector in % latex2html id marker 1064
$\mathbb{R}^{2}$ and $U$ is an orthogonal linear transformation.

Problem 16   Let % latex2html id marker 1101
$\mathbb{Z}^{}$ be the ring of integers, $p$ a prime, and
% latex2html id marker 1109
$\mbox{\bf {F}}_p = \mbox{$\mathbb{Z}^{}$}/p\mbox{$\mathbb{Z}^{}$}$ the field of $p$ elements. Let $x$ be an indeterminate, and set
% latex2html id marker 1115
$R_1=\mbox{\bf {F}}_p[x]/\langle x^2-2 \rangle$, % latex2html id marker 1117
$R_2 = \mbox{\bf {F}}_p[x]/\langle x^2-3\rangle $. Determine whether the rings $R_1$ and $R_2$ are isomorphic in each of the cases $p = 2, 5, 11$.

Problem 17   Let $V$ be a finite-dimensional vector space (over % latex2html id marker 1156
$\mathbb{C}\,^{}$) of $C^{\infty}$ complex valued functions on % latex2html id marker 1160
$\mathbb{R}^{}$ (the linear operations being defined pointwise). Prove that if $V$ is closed under differentiation (i.e., $f'(x)$ belongs to $V$ whenever $f(x)$ does), then $V$ is closed under translations (i.e., $f(x+a)$ belongs to $V$ whenever $f(x)$ does, for all real numbers $a$).

Problem 18   Let $f$, $g_1$, $g_2,\ldots$ be entire functions. Assume that
  1. $\vert g_n^{(k)}(0)\vert \leq \vert f^{(k)}(0)\vert$ for all $n$ and $k$;

  2. $\displaystyle{\lim_{n\to\infty}g_n^{(k)}(0)}$ exists for all $k$.

Prove that the sequence $\{g_n\}$ converges uniformly on compact sets and that its limit is an entire function.

Problem 19   Prove that the additive group of % latex2html id marker 1229
$\mathbb{Q}\,^{}$, the rational number field, is not finitely generated.

Note: See also Problems [*] and [*].

Problem 20   Evaluate

\begin{displaymath}\int_{\vert z\vert=1}(e^{2\pi z}+1)^{-2}\,dz \end{displaymath}

where the integral is taken in counterclockwise direction.



Previous Next Contents
Previous: Fall85 Next: Fall86

Paulo Ney de Souza & Jorge-Nuno Silva
2000-08-10