Previous Next Contents
Previous: Fall80 Next: Summer81

Preliminary Exam - Spring 1981



Problem 1   Let $\vec{\imath}$, $\vec{\jmath}$, and $\vec{k}$ be the usual unit vectors in % latex2html id marker 679
$\mathbb{R}^{3}$. Let $\vec{F}$ denote the vector field

\begin{displaymath}(x^2+y-4)\vec{\imath} + 3xy\vec{\jmath} + (2xz+z^2)\vec{k}. \end{displaymath}

  1. Compute $\nabla \times \vec{F}$ (the curl of $\vec{F}$).

  2. Compute the integral of $\nabla \times \vec{F}$ over the surface $x^2+y^2+z^2=16$, $z\geq 0$.

Problem 2   Let $T$ be a linear transformation of a vector space $V$ into itself. Suppose $x\in V$ is such that $T^m x = 0$, $T^{m-1}x\neq0$ for some positive integer $m$. Show that $x,\, Tx,\ldots , T^{m-1}x$ are linearly independent.

Problem 3   Let $D$ be an ordered integral domain and $a \in D$. Prove that

\begin{displaymath}a^2-a+1>0. \end{displaymath}

Problem 4   Consider the system of differential equations

\begin{eqnarray*}
\frac{dx}{dt} & = & y + x(1-x^2-y^2) \\
\frac{dy}{dt} & = & -x+y(1-x^2-y^2).
\end{eqnarray*}



  1. Show that for any $x_0$ and $y_0$, there is a unique solution $(x(t),y(t))$ defined for all % latex2html id marker 755
$t\in \mbox{$\mathbb{R}^{}$}$ such that $x(0)=x_0$, $y(0)=y_0$.
  2. Show that if $x_0 \neq 0$ and $y_0 \neq 0$, the solution referred to in Part 1 approaches the circle $x^2+y^2=1$ as $t\to\infty$.

Problem 5   Decompose $x^4-4$ and $x^3-2$ into irreducibles over % latex2html id marker 791
$\mathbb{R}^{}$, over % latex2html id marker 793
$\mathbb{Z}^{}$, and over % latex2html id marker 797
$\mbox{$\mathbb{Z}^{}$}_3$ (the integers modulo $3$).

Problem 6   Suppose the complex polynomial

\begin{displaymath}\sum_{k=0}^na_kz^k \end{displaymath}

has $n$ distinct roots % latex2html id marker 825
$r_1,\ldots,r_n \in \mbox{$\mathbb{C}\,^{}$}$. Prove that if $\vert b_k-a_k\vert$ is sufficiently small then

\begin{displaymath}\sum_{k=0}^nb_kz^k \end{displaymath}

has $n$ roots which are smooth functions of $b_0,\ldots,b_n$.

Problem 7   Evaluate

\begin{displaymath}\int_{-\infty}^{\infty}\frac{x\sin x}{(1+x^2)^2}\,dx\, . \end{displaymath}

Problem 8   Let % latex2html id marker 858
$f:[0,1] \to \mbox{$\mathbb{R}^{}$}$ be continuous. Prove that there is a real polynomial $P(x)$ of degree $\leq 10$ which minimizes (for all such polynomials)

\begin{displaymath}\sup_{0\leq x \leq 1}\vert f(x)-P(x)\vert. \end{displaymath}

Problem 9   Show that the following three conditions are all equivalent for a real 3$\times $3 symmetric matrix $A$, whose eigenvalues are $\lambda_1$, $\lambda_2$, and $\lambda_3$:
  1. $\mathrm{tr}\, A$ is not an eigenvalue of $A$.

  2. $(a+b)(b+c)(a+c) \neq 0$.

  3. The map $L:S \to S$ is an isomorphism, where $S$ is the space of 3$\times$3 real skew-symmetric matrices and $L(W) = AW + WA$.

Problem 10  
  1. Give an example of a sequence of $C^1$ functions

    \begin{displaymath}
% latex2html id marker 915
f_k:[0,\infty) \to \mbox{$\mathbb{R}^{}$}, \quad k=0,1,2, \ldots\end{displaymath}

    such that $f_k(0)=0$ for all k, and $f_k'(x) \to f_0'(x)$ for all $x$ as $k \to \infty$, but $f_k(x)$ does not converge to $f_0(x)$ for all $x$ as $k \to \infty$.

  2. State an extra condition which would imply that $f_k(x) \to f_0(x)$ for all $x$ as $k \to \infty$.

Problem 11   Evaluate

\begin{displaymath}\int_C\frac{e^z-1}{z^2(z-1)}\,dz \end{displaymath}

where $C$ is the closed curve shown below:



file=../Fig/Pr/Sp81-11,width=4.5in


Problem 12   For % latex2html id marker 989
$x \in \mbox{$\mathbb{R}^{}$}$, let

\begin{displaymath}A_x = \left( \begin{array}{cccc}
x & 1 & 1 & 1 \\
1 & x & 1 & 1 \\
1 & 1 & x & 1 \\
1 & 1 & 1 & x \end{array} \right). \end{displaymath}

  1. Prove that $\det (A_x) = (x-1)^3(x+3)$.
  2. Prove that if $x\neq 1,-3$, then $A_x^{-1}=
-(x-1)^{-1}(x+3)^{-1}A_{-x-2}$.

Problem 13   Which of the following series converges?

  1. \begin{displaymath}\sum_{n=1}^{\infty}\frac{(2n)!(3n)!}{n!(4n)!} \,\cdot\end{displaymath}


  2. \begin{displaymath}\sum_{n=1}^{\infty}\frac{1}{n^{1+1/n}} \,\cdot \end{displaymath}

Problem 14   The set of real 3$\times$3 symmetric matrices is a real, finite-dimensional vector space isomorphic to % latex2html id marker 1038
$\mathbb{R}^{6}$. Show that the subset of such matrices of signature $(2,1)$ is an open connected subspace in the usual topology on % latex2html id marker 1042
$\mathbb{R}^{6}$.

Problem 15   Let % latex2html id marker 1082
$\mbox{\bf {M}}$ be one of the following fields: % latex2html id marker 1084
$\mathbb{R}^{}$, % latex2html id marker 1086
$\mathbb{C}\,^{}$, % latex2html id marker 1088
$\mathbb{Q}\,^{}$, and % latex2html id marker 1090
$\mbox{\bf {F}}_{9}$ (the field with nine elements). Let % latex2html id marker 1092
$\mathfrak{I} \subset \mbox{\bf {M}}[x]$ be the ideal generated by $x^4+2x-2$. For which choices of % latex2html id marker 1096
$\mbox{\bf {M}}$ is the ring % latex2html id marker 1098
$\mbox{\bf {M}}[x]/\mathfrak{I}$ a field?

Problem 16   Let $f(x)$ be a real valued function defined for all $x\geq 1$, satisfying $f(1)=1$ and

\begin{displaymath}f'(x) = \frac{1}{x^2+f(x)^2} \cdot \end{displaymath}

Prove that

\begin{displaymath}\lim_{x\to\infty}f(x) \end{displaymath}

exists and is less than $1+\frac{\pi}{4} \cdot $

Problem 17   Let b be a real nonzero $n\times 1$ matrix (a column vector). Set $M=bb^t$ (an $n\times n$ matrix) where $b^t$ denotes the transpose of b.
  1. Prove that there is an orthogonal matrix $Q$ such that $QMQ^{-1}=D$ is diagonal, and find $D$.

  2. Describe geometrically the linear transformation % latex2html id marker 1170
$M:\mbox{$\mathbb{R}^{n}$} \to \mbox{$\mathbb{R}^{n}$}$.

Problem 18   Describe the two regions in $(a,b)$-space for which the function

\begin{displaymath}f_{a,b}(x,y) = ay^2 + bx \end{displaymath}

restricted to the circle $x^2+y^2=1$, has exactly two, and exactly four critical points, respectively.

Problem 19   Let $G$ be a finite group. A conjugacy class is a set of the form

\begin{displaymath}C(a) = \{bab^{-1} \;\vert\; b \in G \} \end{displaymath}

for some $a \in G$.
  1. Prove that the number of elements in a conjugacy class divides the order of $G$.

  2. Do all conjugacy classes have the same number of elements?

  3. If $G$ has only two conjugacy classes, prove $G$ has order $2$.

Problem 20   Let % latex2html id marker 1242
$f:[0,1] \to \mbox{$\mathbb{R}^{}$}$ be continuous with $f(0)=0$. Show there is a continuous concave function % latex2html id marker 1248
$g:[0,1] \to \mbox{$\mathbb{R}^{}$}$ such that $g(0)=0$ and $g(x)\geq f(x)$ for all $x \in [0,1]$.

Note: A function % latex2html id marker 1258
$g:I \to \mbox{$\mathbb{R}^{}$}$ is concave if

\begin{displaymath}g \left( tx + (1-t)y \right) \geq tg(x) + (1-t)g(y)\end{displaymath}

for all $x$ and $y$ in $I$ and $0\leq t \leq 1$. _function,>concave



Previous Next Contents
Previous: Fall80 Next: Summer81

Paulo Ney de Souza & Jorge-Nuno Silva
2000-08-10