Previous Next Contents
Previous: Fall77 Next: Summer78

Preliminary Exam - Spring 1978



Problem 1   Let $k\geq 0$ be an integer and define a sequence of maps

\begin{displaymath}
% latex2html id marker 675
f_n :\mbox{$\mathbb{R}^{}$} \to ...
...
f_n(x) = \frac{x^k}{x^2+n}, \hspace{.2in} n = 1, 2, \ldots . \end{displaymath}

For which values of $k$ does the sequence converge uniformly on % latex2html id marker 685
$\mathbb{R}^{}$? On every bounded subset of % latex2html id marker 687
$\mathbb{R}^{}$?

Problem 2   Prove that a map % latex2html id marker 722
$g:\mbox{$\mathbb{R}^{n}$} \to \mbox{$\mathbb{R}^{n}$}$ is continuous only if its graph is closed in % latex2html id marker 728
$\mbox{$\mathbb{R}^{n}$}\times\mbox{$\mathbb{R}^{n}$}$. Is the converse true?

Note: See also Problem [*].

Problem 3   Let % latex2html id marker 764
$f:\mbox{$\mathbb{C}\,^{}$} \to \mbox{$\mathbb{C}\,^{}$}$ be a nonconstant entire function. Prove that % latex2html id marker 768
$f(\mbox{$\mathbb{C}\,^{}$})$ is dense in % latex2html id marker 770
$\mathbb{C}\,^{}$.

Problem 4   Evaluate

\begin{displaymath}\int_{-\infty}^{\infty}\frac{\sin^2x}{x^2}\,dx\, . \end{displaymath}

Problem 5   let % latex2html id marker 825
$\mbox{$\mathbb{Z}^{}$}_n$ denote the ring of integers modulo n. Let % latex2html id marker 829
$\mbox{$\mathbb{Z}^{}$}_n[x]$ be the ring of polynomials with coefficients in % latex2html id marker 833
$\mbox{$\mathbb{Z}^{}$}_n$. Let $\mathfrak{I}$ denote the ideal in % latex2html id marker 839
$\mbox{$\mathbb{Z}^{}$}_n [x]$ generated by $x^2+x+1$.
  1. For which values of n, $1 \leq n \leq 10$, is the quotient ring % latex2html id marker 847
$\mbox{$\mathbb{Z}^{}$}_n [x]/\mathfrak{I}$ a field?

  2. Give the multiplication table for % latex2html id marker 851
$\mbox{$\mathbb{Z}^{}$}_2/\mathfrak{I}$.

Problem 6   Prove that the sum of two algebraic numbers is algebraic. (An algebraic number is a complex number which is a root of a polynomial with rational coefficients.)

Problem 7   What is the volume enclosed by the ellipsoid

\begin{displaymath}\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1? \end{displaymath}

Problem 8   Consider the differential equation

\begin{displaymath}\frac{dx}{dt} = x^2 + t^2, \quad x(0)=1. \end{displaymath}

  1. Prove that for some $b>0$, there is a solution defined for $t \in [0,b]$.
  2. Find an explicit value of $b$ having the property in Part 1.
  3. Find a $c>0$ such that there is no solution on $[0,c]$.

Problem 9   Determine the Jordan Canonical Form of the matrix

\begin{displaymath}A = \left( \begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 4 \end{array} \right). \end{displaymath}

Problem 10   Suppose $A$ is a real $n\times n$ matrix.
  1. Is it true that $A$ must commute with its transpose?

  2. Suppose the columns of $A$ (considered as vectors) form an orthonormal set; is it true that the rows of $A$ must also form an orthonormal set?

Problem 11   Show that there is a complex analytic function defined on the set % latex2html id marker 959
$U=\{z \in \mbox{$\mathbb{C}\,^{}$}\;\vert\;\vert z\vert>4\}$ whose derivative is

\begin{displaymath}\frac{z}{(z-1)(z-2)(z-3)}\cdot \end{displaymath}

Is there a complex analytic function on $U$ whose derivative is

\begin{displaymath}\frac{z^2}{(z-1)(z-2)(z-3)}\;? \end{displaymath}

Problem 12   Prove that the uniform limit of a sequence of complex analytic functions is complex analytic. Is the analogous theorem true for real analytic functions?

Problem 13  
  1. For which real numbers $\alpha >0$ does the differential equation

    \begin{displaymath}(*) \qquad \frac{dx}{dt}=x^{\alpha}, \hspace{.2in} x(0)=0\,, \end{displaymath}

    have a solution on some interval $[0,b],\; b>0$?

  2. For which values of $\alpha$ are there intervals on which two solutions of $(*)$ are defined?

Problem 14   Let $G$ be a group of order $10$ which has a normal subgroup of order $2$. Prove that $G$ is abelian.

Problem 15   Is $x^4+1$ irreducible over the field of real numbers? The field of rational numbers? A field with $16$ elements?

Problem 16   Let $A$ and $B$ denote real n$\times$n symmetric matrices such that $AB = BA$. Prove that $A$ and $B$ have a common eigenvector in % latex2html id marker 1031
$\mathbb{R}^{n}$.

Problem 17   Evaluate

\begin{displaymath}\int_{\cal A}e^{-x^2-y^2}\,dxdy\,, \end{displaymath}

where % latex2html id marker 1050
${\cal A} = \{(x,y) \in \mbox{$\mathbb{R}^{2}$} \;\vert\; x^2+y^2\leq 1\}$.

Problem 18   Let $M$ be a matrix with entries in a field % latex2html id marker 1105
$\mbox{\bf {F}}$. The row rank of $M$ over % latex2html id marker 1109
$\mbox{\bf {F}}$ is the maximal number of rows which are linearly independent (as vectors) over % latex2html id marker 1111
$\mbox{\bf {F}}$. The column rank is similarly defined using columns instead of rows. _matrix,>row rank _matrix,>column rank
  1. Prove row rank = column rank.

  2. Find a maximal linearly independent set of columns of

    \begin{displaymath}\left( \begin{array}{cccc}
1 & 0 & 3 & -2 \\
2 & 1 & 2 & 0 \...
... -4 & 4 \\
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 2 \end{array} \right)\end{displaymath}

    taking % latex2html id marker 1115
$\mbox{\bf {F}} =\mbox{$\mathbb{R}^{}$}$.

  3. If % latex2html id marker 1117
$\mbox{\bf {F}}$ is a subfield of % latex2html id marker 1119
$\mbox{\bf {K}}$, and $M$ has entries in % latex2html id marker 1123
$\mbox{\bf {F}}$, how is the row rank of $M$ over % latex2html id marker 1127
$\mbox{\bf {F}}$ related to the row rank of $M$ over % latex2html id marker 1131
$\mbox{\bf {K}}$?

Problem 19   Let % latex2html id marker 1175
$f:[0,1] \to \mbox{$\mathbb{R}^{}$}$ be Riemann integrable over $[b,1]$ for all b such that $0<b\leq 1$.
  1. If f is bounded, prove that f is Riemann integrable over $[0,1]$.

  2. What if f is not bounded?

Problem 20   Consider the system of equations

\begin{displaymath}\begin{array}{r}
3x + y - z + u^4 = 0 \\
x - y + 2z + u = 0 \\
2x + 2y - 3z + 2u = 0 \end{array} \end{displaymath}

  1. Prove that for some $\varepsilon>0$, the system can be solved for $(x,y,u)$ as a function of $z \in [-\varepsilon,\varepsilon ]$, with $x(0)=y(0)=u(0)=0$. Are such functions $x(z)$, $y(z)$ and $u(z)$ continuous? Differentiable? Unique?

  2. Show that the system cannot be solved for $(x,y,z)$ as a function of $u \in [-\delta,\delta]$, for all $\delta >0$.



Previous Next Contents
Previous: Fall77 Next: Summer78

Paulo Ney de Souza & Jorge-Nuno Silva
2000-08-10