Previous Next Contents
Previous: Spring94 Next: Spring95

Preliminary Exam - Fall 1994



Problem 1   For which values of the real number $a$ does the series

\begin{displaymath}\sum_{n=1}^{\infty} \left( \frac{1}{n}- \sin \frac{1}{n} \right)^{a}\end{displaymath}

converge?

Problem 2   Prove that the matrix


\begin{displaymath}\left( \begin{array}{ccc}
1 & 1.00001 & 1 \\
1.00001 & 1 & 1.00001 \\
1 & 1.00001 & 1
\end{array}\right)
\end{displaymath}

has one positive eigenvalue and one negative eigenvalue.

Problem 3   Evaluate the integrals

\begin{displaymath}\int_{-\pi}^{\pi} \frac{\sin n \theta}{\sin \theta} d \theta, \quad n=1, 2, \ldots .\end{displaymath}

Problem 4   Suppose the group $G$ has a nontrivial subgroup $H$ which is contained in every nontrivial subgroup of $G$. Prove that $H$ is contained in the center of $G$.

Problem 5  
  1. Find a basis for the space of real solutions of the differential equation

    \begin{displaymath}(*)\: \: \: \: \:\:\:\:\: \sum_{n=0}^{7} \frac{d^{n}x}{dt^{n}}=0.\end{displaymath}

  2. Find a basis for the subspace of real solutions of $(*)$ that satisfy

    \begin{displaymath}\lim_{t \to + \infty} x(t) =0.\end{displaymath}

Problem 6   Let $A= \left( a_{ij} \right)_{i,j=1}^{n}$ be a real $n \times n$ matrix such that $a_{ii} \geq 1$ for all $i$, and

\begin{displaymath}\sum_{i \neq j} a_{ij}^{2} < 1.\end{displaymath}

Prove that $A$ is invertible.

Problem 7   Let $f$ be a continuously differentiable function from % latex2html id marker 754
$\mathbb{R}^{2}$ into % latex2html id marker 756
$\mathbb{R}$. Prove that there is a continuous one-to-one function $g$ from $[0,1]$ into % latex2html id marker 762
$\mathbb{R}^{2}$ such that the composite function $f \circ g$ is constant.

Problem 8   Let % latex2html id marker 805
$\mathbb{Q}$ be the field of rational numbers. For $\theta$ a real number, let % latex2html id marker 809
$\mbox{\bf {F}}_{\theta}=\mathbb{Q}(\sin \theta)$ and % latex2html id marker 811
$\mbox{\bf {E}}_{\theta}=\mathbb{Q}\left(\sin \frac{\theta}{3}\right)$. Show that % latex2html id marker 813
$\mbox{\bf {E}}_{\theta}$ is an extension field of % latex2html id marker 815
$\mbox{\bf {F}}_{\theta}$, and determine all possibilities for % latex2html id marker 817
${\dim}_{\mbox{\scriptsize\bf F}_{\theta}} \mbox{\bf {E}}_{\theta}$.

Problem 9   Evaluate

\begin{displaymath}\int_{0}^{\infty} \frac{(\log x)^2}{x^{2}+1}\, dx\, .\end{displaymath}

Problem 10   Let the function % latex2html id marker 873
$f: \mathbb{R}^{n} \to \mathbb{R}^{n}$ satisfy the following two conditions:
(i)
$f(K)$ is compact whenever $K$ is a compact subset of % latex2html id marker 879
$\mathbb{R}^{n}$.
(ii)
If $\{K_{n}\}$ is a decreasing sequence of compact subsets of % latex2html id marker 883
$\mathbb{R}^{n}$, then

\begin{displaymath}f \left( \bigcap_{1}^{\infty} K_{n} \right) = \bigcap_{1}^{\infty} f \left(
K_{n} \right).\end{displaymath}

Prove that $f$ is continuous.

Problem 11   Write down a list of 5$\times $5 complex matrices, as long as possible, with the following properties:
  1. The characteristic polynomial of each matrix in the list is $x^{5}$;
  2. The minimal polynomial of each matrix in the list is $x^{3}$;
  3. No two matrices in the list are similar.

Problem 12   Suppose the coefficients of the power series

\begin{displaymath}\sum_{n=0}^{\infty} a_{n}z^{n}\end{displaymath}

are given by the recurrence relation

\begin{displaymath}a_{0}=1, \; a_{1}=-1, \; 3a_{n}+4a_{n-1}-a_{n-2}=0, \;\;n=2, 3, \ldots .\end{displaymath}

Find the radius of convergence of the series and the function to which it converges in its disc of convergence.

Problem 13   Let $p$ be an odd prime and % latex2html id marker 948
$\mbox{\bf {F}}_{p}$ the field of $p$ elements. How many elements of % latex2html id marker 952
$\mbox{\bf {F}}_{p}$ have square roots in % latex2html id marker 954
$\mbox{\bf {F}}_{p}$? How many have cube roots in % latex2html id marker 956
$\mbox{\bf {F}}_{p}$?

Problem 14   Find the maximum area of all triangles that can be inscribed in an ellipse with semiaxes $a$ and $b$, and describe the triangles that have maximum area.

Note: See also Problem [*].

Problem 15   Let $M_{7\times 7}$ denote the vector space of real 7$\times $7 matrices. Let $A$ be a diagonal matrix in $M_{7\times 7}$ that has $+1$ in four diagonal positions and $-1$ in three diagonal positions. Define the linear transformation $T$ on $M_{7\times 7}$ by $T(X)=AX-XA$. What is the dimension of the range of $T$?

Problem 16   Let ${\cal D}$ denote the open unit disc in % latex2html id marker 1036
$\mathbb{R}^{2}$. Let $u$ be an eigenfunction for the Laplacian in ${\cal D}$; that is, a real valued function of class $C^{2}$ defined in $\overline{\cal D}$, zero on the boundary of ${\cal D}$ but not identically zero, and satisfying the differential equation _Laplacian,>eigenfunction

\begin{displaymath}\frac{\partial ^{2}u}{\partial x^{2}} +
\frac{\partial ^{2}u}{\partial y^{2}}= \lambda u \,,\end{displaymath}

where $\lambda$ is a constant. Prove that


\begin{displaymath}(*)\qquad
\int\!\!\int_{\cal D} \left\vert\mathrm{grad}\:u \right\vert^{2}dxdy
+ \lambda \int\!\!\int_{\cal D} u^{2}dxdy=0\,,\end{displaymath}

and hence that $\lambda < 0$.

Problem 17   Let $R$ be a ring with identity, and let $u$ be an element of $R$ with a right inverse. Prove that the following conditions on $u$ are equivalent:
  1. $u$ has more than one right inverse;

  2. $u$ is a zero divisor;

  3. $u$ is not a unit.

Problem 18   Let the function $f$ be analytic in the complex plane, real on the real axis, $0$ at the origin, and not identically $0$. Prove that if $f$ maps the imaginary axis into a straight line, then that straight line must be either the real axis or the imaginary axis.



Previous Next Contents
Previous: Spring94 Next: Spring95

Paulo Ney de Souza & Jorge-Nuno Silva
2000-08-10