
Fermat's Last Theorem for Cubes 

Before considering the integer equation x^3 + y^3 = z^3, it's  
worthwhile to briefly review the simple Pythagorean equation  
x^2 + y^2 = z^2.  For primitive solutions we can assume x,y,z 
are pairwise coprime, x is odd and y is even.  The usual approach 
is to re-write the equation as 
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Then, since the two integer factors on the right are coprime (and  
since we have unique factorization for integers), they must each  
individually be squares, so we have z+x = 2u^2 and z-x = 2v^2 for  
coprime integers u,v, (one odd and one even) from which it follows  
that z = u^2 + v^2, x = u^2 - v^2, and y = 2uv.   
 
However, there is another approach to solving the Pythagorean equation  
that makes use of some deeper properties of integers known to Fermat,  
and that can be generalized to the case of cubes.  This alternative  
approach relies on the fact that numbers of the form X^2 + Y^2 with  
gcd(X,Y)=1 can be "factored" uniquely into a product of primes of the  
same form, and that the representations of composites of this form  
are generated by applying the identity 
 

(a^2 + b^2)(c^2 + d^2)  =  (ac +- bd)^2  +  (ad -+ bc)^2 
 
It's been speculated that Diophantus knew this identity, although 
he didn't give it explicitly in any of the (surviving) books of 
"Arithmetica".  The first known explicit description was by Abu  
Jafar al-Khazin (circa 950 AD), and it also appears in Fibonacci's  
"Liber Quadratorum" (1225 AD).  One could argue that this was really 
the first discovery of complex numbers, in the abstract sense of 
Hamilton's ordered pairs, because in C the product of (a,b) and  
(c,d) is (ac-bd,ad+bc).  In any case, Fermat knew that only primes 
of the form 4k+1 are expressible as a sum of two coprime squares, 
and those are expressible in only one way.  This, combined with the 
fact that representations of composites are given by the above 
formula applied to the representations of their factors, enables 



us to say that if x^2 + y^2 is a square then the components x,y 
are given by squaring a number of the form (u^2 + v^2) using the 
above identity.  As a result we have 
 

x^2 + y^2  =  (u^2 + v^2)^2  =  (u^2 - v^2)^2  +  (2uv)^2 
 
which of course agrees with our previous solution.  Thus, given the 
theorems about sums of two squares and their unique factorizations 
that were known to Fermat, this is (arguably) an even more direct 
solution than the original one, which is perhaps not surprising, 
since it is essentially employing the field of Gaussian integers, 
in disguised form. 
 
Now let's consider the analagous equation for cubes, i.e., we seek 
all non-trivial integer solutions of x^3 + y^3 = z^3.  Again we  
consider only primitive solutions, so without loss of generality  
we can assume x,y,z are coprime, one even and two odd.  Changing  
signs if necessary we can make x and y odd and z even.  Now we  
define x=u+v and y=u-v where (u,v)=1, and u,v have opposite parity.  
Substituting into x^3 + y^3 = z^3 gives 
 

(2u)(u^2 + 3v^2)  =  z^3                   (1) 
 
Since z is even, u must be even and v must be odd.  Now we'll consider  
two cases.  First, assume z is not divisible by 3.  In this case 2u is  
coprime to u^2 + 3v^2, so both of those factors must be cubes.  Thus  
we have integers coprime m,n such that  
 

u = 4m^3                             (2) 
 

u^2 + 3v^2 = n^3                        (3) 
 
In the case of the Pythagorean equation we had a sum of two squares 
equal to a square, whereas in this case we have a slightly different 
quadratic form, X^2 + 3Y^2, equal to a cube.  Notice that we can't 
simply subtract u^2 from both sides of (3) and then factor the right 
hand side, because it is inhomogeneous, i.e., we would have a cube  
minus a square, which doesn't factor algenraically over the integers. 
We can, however, proceed to use the second approach, based on factoring 
the left hand side of (3) into divisors of the same form, provided we 



know enough about numbers of the form X^2 + 3Y^2. 
 
Happily, it turns out that we have a direct analog for the "Fibonacci 
identity".  In fact, for ANY integer N we have 
 

(a^2 + Nb^2)(c^2 + Nd^2)  =  (ac +- Nbd)^2  +  N(ad -+ bc)^2 
      
so we can always multiply together two numbers of the quadratic 
form X^2 + NY^2  to give another number of the same form.  With k=3  
this identity is 
 

(a^2 + 3b^2)(c^2 + 3d^2)  =  (ac +- 3bd)^2 + 3(ad -+ bc)^2 
 
With this identity in mind, we state and prove several facts about 
numbers of the quadratic form X^2 + 3Y^2 which are useful for  
continuing our search for solutions of x^3 + y^3 = z^3. 
 
 
LEMMA 1:  Every prime p of the form 3k+1 divides some integer 

of the form a^2 + 3b^2 with (a,b)=1. 
 
PROOF:  Since u^2 + uv + v^2 is an equivalent form under the 
substitution u=b+a and v=b-a, we need only prove that p divides  
such an integer, with (u,v)=1.  Consider  
 

u^3k - v^3k = (u^k - v^k)(u^2k + u^k v^k + v^2k) 
 
where 3k = p-1.  Setting v=1 ensures (u,v)=1 and enables us  
to write 
 

u^3k - 1 = (u^k - 1)(u^2k + u^k + 1) 
 
The left hand side is divisible by p according to Fermat's Little 
Theorem for any integer u coprime to p.  Therefore, the right side 
is also divisible by p for every such u.  In order for p to NOT 
divide any of the number u^(2k) + u^k + 1, it must divide EACH of 
the numbers u^k - 1 for u = 1,2,3,..,p-1.  However, the congruence 
u^[(p-1)/3] = 1 (mod p) can have no more than (p-1)/3 distinct  
roots, so it is NOT satisfied for 2/3 of the residues modulo p. 
Therefore, each of those non-roots is a value of u for which p 



must divide u^(2k) + u^k + 1.  Also, since more than half of those 
residues qualify, we can choose an odd u, and then a = (u-1)/2 
and b = (u+1)/2.  With these values, p divides a^2 + 3b^2, which 
completes the proof of Lemma 1. 
 
 
LEMMA 2:  If N is an integer of the form a^2 + 3b^2, and if the prime   
p = c^2 + 3d^2  divides N, then there exist integers u,v such that  
N/p = u^2 + 3v^2  and the repesentation of N is given by evaluating the 
product  (p)(N/p) = (u^2 + 3v^2)(c^2 + 3d^2) using Fibonacci's  formula. 
 
PROOF:  Since p divides N, it must divide Nd^2 - pb^2.  Also, 
we have  
 
     Nd^2 - pb^2  =  (a^2 + 3b^2)d^2 - (c^2 + 3d^2)b^2 
 
                             =  (ad + bc)(ad - bc) 
 
which shows that the prime p must divide either ad+bc or ad-bc. 
Now, we can also write 
 

Np  =  (ac +- 3bd)^2  +  3(ad -+ bc)^2 
 
Depending on whether p divides ad+bc or ad-bc, we can choose the 
sign in the above expression so that p divides the right-most 
term.  Then, since it also divides Np, it must divide the first 
term on the right.  Therefore, dividing the above expression for 
Np by p^2, we have N/p  =  u^2 + 3v^2  where  u,v are the integers 
given by 

u = (ac +- 3bd)/p      v = (ad -+ bc)/p 
 
again with the choice of sign such that p divides ad-+bc.  Solving 
these two equations for a and b gives 
 

a = (cu + 3dv)         b = +-(du - cv) 
 
This shows that the representation of N is given by applying 
Fibonacci's formula to multiply (p)(N/p), which completes the 
proof of Lemma 2. 
 



 
LEMMA 3:  If we let [n\p] equal +1 or -1 accordingly as n is or 
          is not a square (mod p), and if m,n are residues coprime 
          to p, then [mn\p] = [m\p][n\p]. 
 
PROOF:  If m,n are both squares (mod p), then obviously mn is also 
a square.  Also, if one of m,n is a square and the other is not,  
then it follows that their product mn is not, because if m=x^2 and  
mn=y^2 we would have n = (y/x)^2, contrary to assumption that n is  
not square.  The leaves only the case when neither m nor n is a  
square.  To resolve this case, note that the non-zero multiplication  
table (modulo p) has unique inverse, so each non-zero residue  
appears in row and column precisely once.  Also, since x^2=y^2  
(mod p) implies (x-y)(x+y) mod p, it's clear that the squares of  
the residues 1 through (p-1)/2 are all distinct, and respectively  
equal to the squares of the residues (p+1)/2 to p-1.  Therefore,  
the squares and non-squares each make up exactly half the non-zero  
residues.  Also, each residue appears p-1 times in the table, so if  
fill in all the products of two squares, and all the products of a  
square and a non-square, we are left only with squares, which must  
be placed in the remaining openings, the products of two non-squares. 
Therefore  [mn\p] = [m\p][n\p], completing the proof of Lemma 3. 
 
 
LEMMA 4:  If the integer N is representable in the form a^2 + 3b^2 
          with (a,3b)=1, then the only odd prime factors of N are  
          of the form p = 3k+1. 
 
PROOF:  If N was divisible by a prime p, then we have a^2 = -3b^2   
(mod p), which implies that (-3) is a square modulo p.  It's easy to  
show that [-1\p] = (-1)^(p-1)/2, and by quadratic reciprocity we  
also have [3\p] = [p\3](-1)^(p-1)/2.  From Lemma 3 and quadratic 
reciprocity it follows that [-3\p] = [-1\p][3\p] = [p\3].  Thus any  
number of the form a^2 + 3b^2 with (a,3b)=1 is divisible by only  
primes of the form 3k+1, which completes the proof of Lemma 4. 
 
   Notes: 
   1. It's possible to avoid the use of full quadratic reciprocity 
   here, but I wonder if Fermat might have just assumed it? 
   2. If a^2 + 3b^2 with (a,b)=1 is even, then a,b are odd, in  
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   which case either a+b or a-b must be divisible by 4.  With that  
   choice of sign we can set B=a+-b and A=a-+3b and then we have  
   A^2 + 3B^2 = [a^2+3b^2]/4.  Repeating if necessary, we can factor  
   out all powers of 2, leaving an odd proper representation. 
 
 
LEMMA 5:  Every prime p of the form 3k+1 is expressible in the  
          form u^2 + 3v^2 with (a,b)=1 in precisely one way. 
 
PROOF:  By Lemma 1 we know that p divides some integer of the form 
a^2 + 3b^2.  Also, by replacing a and b with their least magnitude 
residues modulo p, the result is still divisible by p, but now we 
are assured that a and b are each less than or equal to (p-1)/2, 
from which it follows that a^2 + 3b^2 is strictly less than p^2. 
Therefore, all the prime divisors of a^2 + 3b^2 other than p are 
strictly smaller than p, and according to Lemma 4 all of those 
prime divisors are of the form 3k+1, and according to Lemma 3 they 
are all of the form u^2 + 3v^2.  Therefore, we can apply Lemma 2 to  
each of these smaller prime divisors in turn, yielding a unique  
quotient of the form a^2 + 3b^2, until arriving at p.  This  
completes the proof of Lemma 5. 
 
 
LEMMA 6:  The general primitive solution in integers of the equation 
          x^2 + 3y^2 = N^3 for odd N is given by x = u(u^2 - 9v^2) 
          and y = 3v(u^2 - v^2) where u,v are coprime integers. 
 
PROOF:  By Lemma 4 we know that N^3 is a product of primes of the 
form 3k+1, each of which by Lemma 5 has a unique proper representation 
of the form a^2 + 3b^2.  Hence by Lemma 2 we can factor x^2 + 3y^2 
uniquely into a product of primes of this form, and the representation 
of N^3 is given by applying the Fibonacci product formula.  Also, it's 
easy to verify that Fibonacci multiplication is commutative, in the 
sense that the two representations given by AB are the same as the two 
given by BA.  Also, we can verify that Fibonacci multiplication is 
associative, i.e., (AB)C = A(BC), by noting the results 
 

[(a^2 + 3b^2)(c^2 + 3d^2)](e^2 + 3f^2) 
=  [ace + s1 3bde + s2 3adf - s1 s2 3bcf]^2 

+ 3[ade - s1 bce - s2 acf - s1 s2 3bdf]^2 



 
Since both components are squared, we need consider only the 
magnitudes of the components, so we can multiply each term of the 
second component by -s1 s2 and write the two components as shown 
below 

ace + 3[ s1 bde + s2 adf - s1 s2 bcf ] 
3 bdf   +  s1 acf + s2 bce - s1 s2 ade ] 

 
Notice that the rows transpose (a,b), (c,d), and (e,f), so they have 
the same symmetry, and if we define s3 = -s1 s2 we have the three- 
way symmetry 

s1 s2 = -s3     s1 s3 = -s2     s2 s3 = -s1 
 
Consequently, the set of proper representations given by the Fibonacci 
product of three proper representations is the same, regardless of the  
order in which the product is evaluated. 
 
Furthermore, the number of distinct proper representations of a  
number equals 2^(k-1) where k is the number of distinct prime  
divisors, because we have two proper choices of sign when multiplying  
two distinct factors (whereas we have no proper choices when  
multiplying powers of a single prime). Since the number of distinct  
prime divisors of N is the same as the number of distinct prime  
divisors of N^3, we can produce all 2^k representations of N^3 as  
the cubes of the 2^k representations of N.  Thus, for some coprime  
integers u,v we have not only  
 

(u^2 + 3v^2)^3  =  x^2 + 3y^2 
 
but also expanding the left side by the Fibonacci formula (which 
gives a unique *proper* result when cubing a single representation) 
we have 
 

x = u(u^2 - 9v^2)      y = 3v(u^2 - v^2) 
 
completing the proof of Lemma 6. 
 
 
Now (finally!) we can return to our original problem.  Recall that  
on the assumption of the existence of integers x,y,z such that  



x^3 + y^3 = z^3, and assuming first that z is not divisible by 3, 
we had shown the existence of integers m,n and coprime integers  
u,v such that 

u = 4m^3                             (2) 
 

u^2 + 3v^2 = n^3                        (3) 
 
where n is odd.  It follows from Lemma 6 that u and v can be expressed 
in terms of integers r,s as follows 
 

u  =  r^3 - 9 r s^2 =  r(r-3s)(r+3s)           v  =  3 r^2 s - 3 s^3 
 
Also, since v is odd and u is even, we must have r even and s odd. 
Further, since u = 4m^3, it's clear that r is 4 times a cube, and 
both r-3s and r+3s are cubes.  Thus we have 
 

r = 4A^3      r-3s = B^3      r+3s = C^3 
 
and therefore from  2r = (r-3s) + (r+3s) we have 
 

(2A)^3 = B^3 + C^3 
 
which is a solution of the original equation in strictly smaller  
integers.  However, by applying the same argument to this new solution 
we can construct a strictly smaller solution, and so on, ad infinitum. 
This is clearly impossible, since there must be some absolutely  
smallest integer solution.  Consequently, by Fermat's principle of 
infinite descent, we see that solutions with z not divisible by 3 
are impossible. 
 
For the second case, suppose z is a multiple of 3.  It follows that 
u is a multiple of 3, and v is not.  In this case we cannot say that 
2u is coprime to u^2 + 3v^2, because both are divisible by 3, but 
if we factor a 3 out of the quantity in parentheses in (1) we have 
 

6u[ 3(u/3)^2 + v^2 ]  =  z^3                (2) 
 
so now 6u is coprime to the quantity in brackets, and so both factors 
are cubes, which implies 
 



u = 36m^3           v^2 + 3(u/3)^2 = n^3 
 
From Lemma 6 we have coprime integers r,s with s even, such that 
 

u/3  =  3 r^2 s - 3 s^3 
 
which implies 

u = 9s(r+s)(r-s) = 36m^3 
 
so we have 

4m^3 = s(r+s)(r-s) 
 
and therefore  
 

s = 4A^3     r+s = B^3     r-s = C^3 
 
Since  2s + (r-s) = (r+s)  we have 
 

(2A)^3  +  C^3  =  B^3 
 
so again we have a solution in smaller integers, and by the principle 
of infinite descent, this is impossible.  Consequently, we have proven 
the result 
 
THEOREM:  The equation x^3 + y^3 = z^3 has no solution in non-zero 
integers. 
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