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On the Moduli of the Zeros of a Polynomial

Seon-Hong Kim

A classical result due to Cauchy (see [8, p. 122]) on the distribution of zeros of a
polynomial may be stated as follows:

Theorem 1. If P(z) = 2" + a,_12" ' 4+ a,22" 2+ --- + aq is a polynomial with
complex coefficients, then all zeros z of P satisfy |z| < r, where r is the positive
solution of the equation

7" = lan )" = laal2"? = = laol = 0.

Diaz-Barrero [4], [5] recently improved this estimate by identifying an annulus con-
taining all the zeros of a polynomial, where the inner and outer radii are expressed in
terms of binomial coefficients and Fibonacci numbers. In this note, we use the well-
known identity

n

ZC(n,k):Z"—l

k=1

for the binomial coefficients C(n, k) = (}) to establish the following enhancement of
Cauchy’s result:

Theorem 2. Let
P(z) = Zakzk (ax #0,1 <k <n)
k=0

be a nonconstant polynomial with complex coefficients. Then all the zeros of P(z) lie
in the annulus

A={z:r =lz]l £}, (D
where
Cn, k) |ao|)"* 2" =1 |a,i|]*
ry = min — , [y = max .
Ikzn | 2" — 1 |a 1<kzn | C(n, k) | a,

Theorem 2 appears to be new and improves the estimates in [5], [1], [2], [3], [6],
and [7].
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Remark. For the polynomial P(z) = z> + 0.1z% + 0.3z 4 0.7 (which is used in [5] to
establish sharpness of the result there), (1) yields the bounds

0.77--- <|z] < 1.19. ..

for any zero z of P. These are better than the proposed bounds

0.58--- <[z <1.23-..

in [5].

We now prove Theorem 2.

Proof. Ifag =0, thenr; = 0.If gy # 0 and |z| < ry, we have

k
r

n n n

k k
1P = laol = Y laxllzl* > laol = Y laelrf = laol [ 1=
k=1 k=1 k=1

ag
ao

. C(n, k)
> |apl 1—22,,—_—1‘ =0.
k=1

Hence P(z) does not have zeros z with |z| < ry. In view of Theorem 1, it remains to
show that Q(r,) > 0, where

Q@) = lap|z" = lap112" ™" = lan2]2" ™ = - = lag].
Now
n n
n k| o C(n, k) nek
0(ry) = la,| rz—; =\ 2 lal ) (Eﬁf’f r
— C(n, k)
=lary 1= ) ———]=0,
|anlry ; ]
which completes the proof. n
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