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On the Moduli of the Zeros of a Polynomial 

Seon-Hong Kim 

A classical result due to Cauchy (see [8, p. 122]) on the distribution of zeros of a 
polynomial may be stated as follows: 

Theorem 1. If P(z) = zn + an-izn-1 + an-2Zn-2 + '" + ao is a polynomial with 
complex coefficients, then all zeros z of P satisfy zl <_ r, where r is the positive 
solution of the equation 

Zn - |an llZn-1 - an-21Zn-2 - - lao0 = 0. 

Diaz-Barrero [4], [5] recently improved this estimate by identifying an annulus con- 
taining all the zeros of a polynomial, where the inner and outer radii are expressed in 
terms of binomial coefficients and Fibonacci numbers. In this note, we use the well- 
known identity 

n 
L C (n,k) =2" -1 
k=l 

for the binomial coefficients C(n, k) = (") to establish the following enhancement of 
Cauchy's result: 

Theorem 2. Let 
n 

P(Z)= akZk (ak O,1 k<n) 
k=0 

be a nonconstant polynomial with complex coefficients. Then all the zeros of P (z) lie 
in the annulus 

A = {z: ri z r2}, (1) 

where 
i C(n, k) a0 1/k 2n -1 an-k 1/k 

r= mm - - , r2 = max 
1<k<n 2n - 1 ak 1<k<n C(n, k) an 

Theorem 2 appears to be new and improves the estimates in [5], [1], [2], [3], [6], 
and [7]. 
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Remark. For the polynomial P (z) = z3 + 0. 12 + 0.3z + 0.7 (which is used in [5] to 
establish sharpness of the result there), (1) yields the bounds 

0.77-. < lz| _ 1.19-.- 

for any zero z of P. These are better than the proposed bounds 

0.58... < Iz < 1.23 ... 

in [5]. 

We now prove Theorem 2. 

Proof If ao = 0, then rl = 0. If ao 0 and Izl < rl, we have 

IP(z)l > ao - lakllzl*kl > aol - akkri =aol (1- k rl) 
k= k=1 k-i a0 

( n C(n, k)\ 
>ao 1 1- 2n- 1 

Hence P(z) does not have zeros z with izl < r. In view of Theorem 1, it remains to 
show that Q(r2) > 0, where 

Q(z) = lanzn - la,-ilzn-1 - lan-2ln-2 - ... - ao 

Now 

0(r n n- k r- >an r I - k r - 
Q(r2)= -Ianl r - a -- iin |1' )I r2 k 

l C(n k)l 

= lanlr 1(- (n ) -0, 

which completes the proof. U 
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