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Finally, by applying the fundamental identity cosh2 ( - sinh2 ( = 1 we find that 

2 sinh = 2 - 4, 

since x = 2 cosh 4, Thus the right-hand side of (8) reduces to the right-hand side in (7). 
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A Simple Proof of Cohen's Theorem 

A. R. Naghipour 

Let M be a module over a commutative ring R. Then M is called a Noetherian mod- 
ule if every submodule of M is finitely generated, and R is called a Noetherian ring 
if it is a Noetherian module over itself. Cohen proved that a commutative ring R is 
Noetherian if and only if every prime ideal in R is finitely generated (see, for example, 
[1] or [3]). Jothilingam has recently given a generalization of Cohen's theorem for 
modules: 

Theorem. Let R be a commutative ring and M a finitely generated R-module. Then 
M is Noetherian if and only if the submodule pM is finitely generated for every prime 
ideal p of R. 

By adapting the argument in [2], we will give a simple proof for this theorem, one 
that doesn't require the theory of associated prime ideals. We remind the reader that 
for an R-module M the set {r e R : rM = 0} is called the annihilator of M and is 
denoted by Ann(M). 

Proof Suppose that M is not Noetherian. By Zom's Lemma there exists a proper 
submodule N of M that is maximal among the nonfinitely generated submodules of M. 
We first show that Ann(M)/N = p is a prime ideal. Suppose that ab belongs to p, but 
that neither a nor b is in p. Then N + aM and N + bM are both finitely generated. 
Assume that {ni + ami }1= is a set of generators N + aM, where ni is in N and mi 
in M. Put L = {m E M : am e N}. It is easy to see that L is a submodule of M 
containing both N and bM. By the maximality of N, L is finitely generated. We show 
that 

N = Rni +aL. 
i=1 
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Consider y in N. Since y belongs to N + aM, there exist bl, ..., be in R such that 

y = bi(ni +ami) = bn i+a bmi. 
i= 1 i= 1 i=1 

This means that a Y~= bimi lies in N, whence y is a member of the ideal 

Rni +aL. 
i=1 

Since the other inclusion is trivial, we get N = Y-=I Rni + aL. It follows that N is 
finitely generated, which contradicts the definition of N. Therefore p is a prime ideal. 

Since M is finitely generated, we have M/N = Rxj + ... + Rx, for some 
x,..., x, in M, where x signifies the equivalence class of x in M/N, hence p = 
n=IAnn(R ). Because p is a prime ideal, p = Ann(Rij) for some j. Suppose that 
the set {yi + rixj }, generates N + Rxj, where yi is in N and ri in R. By an argument 

similar to the earlier one, we have N = Y=l Ryi + pxj. Since pM is contained in N, 
we obtain 

k k k 

N = Ryi + px c Ryi + pM Ryi + NC N. 
i=1 i= 1 i= 

It follows that N = C=l Ryi + pM is a finitely generated submodule of M, a contra- 
diction to the choice of N. Thus M is a Noetherian module. The converse is clear. 
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