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Abstract

In this document, I would like to give several proofs that there
exist infinitely many primes.

0 Introduction

It is well known that the number of primes is infinite.

In this document, I would like to give several proofs of this theorem.
Many of these proofs give poor estimates for the number of primes below a
given number. Let π(x) denote the number of primes below a given number
x. Then many proofs give estimates such that π(x) > c log x for some
constant c > 0.

The proofs in Sections 1, 2, 3, 4, 5, 6, 10, 11, 12 are given in [6]. The
proofs in Sections 1, 3, 6, 13, 11 are introduced in [3]. Eudős’ proof and
Chebysheff’s proof can be found in the book of Hardy-Wright [4]. Other
proofs are given by [1], [2], [5] and [7]. There literatures can be found by
the search result of MathSciNet by “infinitude of prime*”.

Of course, there are more proofs of the infinitude of primes. I would like
to add such proofs later.

1 Euclid’s proof

Suppose that 2 = p1 < p2 < · · · < pr are all of the primes. Let P =
p1p2 · · · pr + 1 and p be a prime dividing P . Since none of p1, p2, . . . , pr

divides P = p1p2 · · · pr +1, p must be another prime. Therefore p1, p2, . . . , pr

cannot be all of the primes.

1

http://www.epmath.99k.org



2 KUMMER’S PROOF 2

Euclid’s proof will be the most popular proof of the infinitude of primes.

It is very simple. Moreover, Euclid’s proof can be modified so that it
gives an information on the distribution of primes; there exists a prime p
with R < p ≤ RR + 1 for any R ≥ 2.

Suppose that 2 = p1 < p2 < · · · < pr are all of the primes below R. Let
P = p1p2 · · · pr + 1 and p be a prime dividing P . Since none of p1, p2, . . . , pr

divides P = p1p2 · · · pr + 1, p must be another prime. We clearly have
p ≤ Rr + 1 ≤ RR + 1. Since p1, p2, . . . , pr are all of the primes below R, we
see that p > R.

We can see that RR + 1 can be replaced by RR/2+1 + 1, finding that
the number of primes below R cannot exceed R/2 + 1 since 1 and all even
integers other than 2 cannot be prime.

Of course, it is very poor result.

We note that a number of the form p1p2 · · · pr +1 is not necessarily itself
prime. Indeed, we see that 2× 3× 11× 13 + 1 = 59× 509.

Euclid’s proof has many variants.

2 Kummer’s proof

Suppose that 2 = p1 < p2 < · · · < pr are all of the primes. Let N =
p1p2 · · · pr > 2. The integerN−1 > pr, being a product of primes, must have
a prime divisor pi. So pi divides N − (N − 1) = 1, which is impossible.

Kummer’s proof is essentially the same as Euclid’s one. Kummer’s uses
p1p2 · · · pr − 1 while Euclid’s uses p1p2 · · · pr + 1. Similar to Euclid’s proof,
Kummer’s proof can be modified to show that there exists a prime p with
R < p ≤ RR/2+1 − 1 for any R ≥ 2.

3 Stieltjes’ proof

Assume that p1, p2, . . . , pr are the only primes. Let N = p1p2 · · · pr and let
N = mn be any factorization of N with m,n ≥ 1. Since each prime pi

divides exactly one of m and n, none of pi’s divides m + n. This means
m+ n is divisible by none of the existing primes, which is impossible since
m+ n > 1.
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4 GOLDBACH’S PROOF 3

4 Goldbach’s proof

We begin by showing that the Fermat numbers Fn = 22n
+ 1(n ≥ 0) are

pairwise coprime. Indeed, we see that Fm−2 = 22n−1 = (22n−1+1)(22n−1−
1) = F0F1 · · ·Fm−1. Therefore any prime dividing both Fm and Fn(m > n)
must divide 2 = Fm− (Fm− 2). However, there can be no such prime since
Fn is odd for any n.

So, if q1 is a prime dividing F1, q2 is a prime dividing F2, . . . , then
q1, q2, . . . is an infinite sequence of primes.

Part 8, Problem 94 of the book of Pólya and Szegö indicates this proof.
However, they are not the first to have this idea. It is written in p. 4 of
Ribenboim’s book:

Nobody seems to be the first to have a good idea – especially if
it is simple. I thought it was due to Pólya and Szegö (see their
book, 1924). E. Specker called my attentino to the fact that
Pólya used an exercise by Hurwitz (1891). But, W. Narkiewirz
just told me that in a letter to Euler (July 20/31, 1730), Gold-
bach wrote the proof given below using Fermat numbers – this
may well be the only written proof of Goldbach.

Explicitly, the first Fermat numbers are F0 = 3, F1 = 5, F2 = 17, F3 =
257, F4 = 65537, each of which is itself prime. However, F5 = 4294967297 =
641 is composite.

5 Schorn’s proof

Assume that there exist only m primes and let n = m + 1. We note the n
integers (n!)i + 1(i = 1, 2, . . . , n) are pairwise coprime. Indeed, if 1 ≤ i <
j ≤ n and j = i+ d, then ((n!)i+ 1, (n!)j + 1) = ((n!)i+ 1, (n!)d) = 1. Let
pi be a prime dividing (n!)i+ 1 for each i = 1, 2, . . . , n. Then p1, p2, . . . , pn

must be distinct primes. Therefore there exist at least n prime numbers,
which is absurd.

Schorn’s proof shows that there exist at least n primes below (n!)n + 1
for any integer n.
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6 EULER’S PROOF 4

6 Euler’s proof

Euler’s proof uses a rather analytic idea while many proofs of the infinitude
of primes are elementary. However, Euler’s method leads to important
developments on the distribution of primes.

Suppost that p1, p2, . . . , pn are all of the primes. Since each pi > 1, the
sum of the geometric series

∑∞
k=0 1/pk

i is 1/(1− 1/pi).

Hence
∏n

i=1 1/(1 − 1/pi) =
∏n

i=1

∑∞
k=0 1/pk

i . The right-hand side is the
sum of all positive integers, each counted at least once, since p1, p2, . . . , pn

are all of the primes. Therefore
∑∞

n=1 1/n ≤
∏n

i=1 1/(1 − 1/pi) must be
finite. However, it is well known that

∑∞
n=1 1/n is divergent (we can see

this by
∑∞

n=1 1/n ≥ 1 + 1/2 + (1/4 + 1/4) + (1/8 + 1/8 + 1/8 + 1/8) + · · · )
This is a contradiction.

Indeed, Euler obtains the well-known formula that
∑∞

n=1 1/ns =
∏n

i=1 1/(1−
1/ps

i ) using the fundamental theorem of arithmetic.

An interesting point of Euler’s method lies on indicating the link between
the zeta function ζ(s) =

∑∞
n=1 1/ns and the prime numbers. This is one of

the most important basis of analytic number theory.

Euler further shows that the reciprocals of the prime is divergent.

We see that
∑N

n=1 1/n ≤
∏

p≤N 1/(1 − 1/p) for any integer N since
any integer ≤ N must have a prime divisor ≤ N . Now log

∏
p≤N 1/(1 −

1/p) = −
∑

p≤N log(1− 1/p), and for each prime p we have log(1− 1/p) =∑∞
m=1 1/(mpm) ≤

∑∞
m=1 1/(pm) = 1/p + 1/p(p − 1) < 1/p + 1/(p − 1)2.

Hence, log
∑N

n=1 1/n ≤
∑

p≤N 1/p+ 1/(p− 1)2 ≤
∑

p≤N 1/p+
∑

n 1/n2.

This shows that
∑

p≤N 1/p ≥ log
∑N

n=1 1/n− c ≥ log logN −C for some
constants c and C.

7 Erdős’ proof

Erdős gave an elementary proof of divergence of the sum of reciprocals of
primes.

Let p1 = 2, p2 = 3, . . . , pj be all primes below x. Let n = n2
1m with m

squarefree. Then m = 2b13b2 · · · pbj

j with every bi either 0 or 1. There exists
at most 2j such integers. For each fixed m, the number of possibility of n1
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8 CHEBYSHEFF’S PROOF 5

is at most x1/2 since n2
1 ≤ n ≤ x. Thus we have x ≤ 2jx1/2, or, equivalently,

j ≤ (log x)/(2 log 2). So that there exist at least (log x)/(2 log 2) prime
numbers below x.

Using Erdős’ argument, we can also prove that the reciprocals of the
prime is divergent.

Assume that there exists a number M such that
∑

p>M 1/p < 1/2. Then
we have

∑
p>M N/p < N/2 for any integer N .

Now divide the positive integers below N into two sets. Let N1 be the
number of positive integer below N which can be divisible by some prime
> M and N2 be the number of remaining integers below N .

Then we have N1 ≤
∑

p>M N/p < N/2. Moreover, we have N2 <

2MN1/2 by repeating the argument given above. So that N = N1 + N2 <
N/2 + 2MN1/2 < N if we take N sufficiently large. This is absurd.

8 Chebysheff’s proof

Chebysheff used the arithmetic property of the factorials to prove his cel-
ebrated theorem that there always exists a prime p with x < p < 2x for
x > 1. Erdős gave a simple proof.

Chebysheff’s argument can be used to give a simple proof of the infini-
tude of primes.

Let a(p,N) be the exponent of prime p dividing the factorial N !.

Then we have a(p,N) = bN/pc+bN/p2c+ · · · < N/(p−1) for any prime
p and a(p,N) = 0 for p > N .

So that
∑

p≤N(log p)/(p− 1) >
∑

p a(p,N)(log p)/N = (1/N) log(N !) >
(logN)−1. Therefore the sum

∑
p≤N(log p)/(p−1) tends to infinity together

with N . This clearly implies the infinitude of primes.

9 Srinivasan’s proof

As mentioned above, any infinite sequence of pairwise coprime integers
shows the infinite of primes.

If the sequence xi satisfies xi | xi+1 and gcd(xi, xi+1/xi), then we imme-
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10 THUE’S PROOF 6

diately see that the sequence xi+1/xi contains no two integers which has a
nontrivial common divisor.

Let f(x) = x2 +x+1. Then f(n2) = f(n)f(−n) and gcd(n2 +n+1, n2−
n+1) = 1. Indeed, n2 +n+1 must be odd and d | gcd(n2 +n+1, n2−n+1)
implies d | 2n, d | n, thus d = 1. So that the sequence f(22m

) works.

The sequence xm = 2pm − 1 also works. We see that q | xm implies
xm+1/xm = ((xm+1)p−1)/((xm+1)−1) = 1+(xm+1)+· · ·+(xm+1)p−1 ≡ p
(mod q). So that if a prime q divides xm and xm+1/xm, then q = p, which
is impossible since xm = (2m)p − 1 ≡ 1 (mod p) by Fermat’s theorem.

We note that the prime factor 2pm−1 must be ≡ 1 (mod pm). Therefore,
this shows that there are infinitely many primes ≡ 1 (mod pm).

Srinivasan also shows that there are infinitely many primes ≡ 1 (mod k)
for every integer k ≥ 1 using the same method. Actually, this is essentially
a variant of Lucas’ argument showing that there are infinitely many primes
≡ 1 (mod k) for every integer k ≥ 1.

10 Thue’s proof

Let n, k ≥ 1 be integers satisfying (1 + n)k < 2n and p1 = 2, p2 = 3, . . . , pr

be all primes ≤ 2n. Every integer m, 1 ≤ m ≤ 2n can be written in the
form m = 2e13e2 · · · per

r . It is clear that every ei ≤ n since m ≤ 2n. Since
the number of such choices of e1, e2, . . . , er is at most (n + 1)r, we have
(1 + n)k < 2n ≤ (1 + n)r. So that r > k. For every integer k ≥ 1, we
have (1 + 2k2)k < 22k2

since 1 + 2k2 < 22k. Thus we can choose n = 2k2

for every integer k ≥ 1. It follows that there exist at least k + 1 primes
p < 2n = 4k2

.

11 Perott’s proof

First we note that
∑∞

n=1(1/n
2) is convergent with sum smaller than 2.

Indeed, it is a well-known result of Euler that the sum is exactly π2/6.
A simple and elementary argument gives that

∑∞
n=1(1/n

2) < 7/4 since

∞∑
n=1

(1/n2) = 1+1/4+
∞∑

n=3

(1/n2) < 5/4+
∞∑

n=3

(1/n(n−1)) = 5/4+
∞∑

n=3

(
1

n− 1
− 1

n
) = 5/4+1/2 = 7/4.
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12 AURIC’S PROOF 7

Let δ = 2 −
∑∞

n=1(1/n
2). The above estimate gives δ > 1/4. Let

p1, p2, . . . , pr be all primes≤ N . The number of integersm ≤ N not divisible
by a square is therefore at most 2r. The number of integers m ≤ N divisible
by d2 is at most N/d2, so that the number of integers m ≤ N divisible by
some square is at most

∑∞
d=2(N/d

2) = N(
∑∞

d=1(N/d
2) − 1) = N(1 − δ).

Therefore N ≤ 2r + N(1 − δ). Thus 2r ≥ δN ≥ N/4. This gives r >
(logN/ log 2)− 2.

Perott’s proof counts that the number of integers m ≤ N not divisible by
a square by excluding the set of integers m ≤ N divisible by each square d2.
This argument is essentially the basis of sieve theory developed to provide
estimates for the number of integers satisfying given conditions.

12 Auric’s proof

Suppose that p1 < p2 < · · · < pr are all of the primes. Let t ≥ 1 be any
integer and N = pt

r.

Each positive integer m ≤ N is written as m = pf1

1 p
f2

2 · · · pfr
r with the

r-tuple (f1, f2, . . . , fr) uniquely defined. Letting E = (log pr)/(log p1), we
have fi ≤ tE since pfi

1 ≤ pfi

i ≤ N = pt
r for every i. Thus N is at most

the number of r-tuples (f1, f2, . . . , fr) and therefore pr
t = N ≤ (tE + 1)r ≤

tr(E + 1)r, which is clearly impossible for sufficiently large t.

13 Boije and Gennäs

Let X be an arbitrary real number and 2, 3, . . . , pn be all primes ≤ X. Take
P = 2e13e2 · · · pen

n with each ei ≥ 1. Write P as a product of relatively prime
factors δ, P/δ, where Q = P/δ − δ > 1. Since Q is divisible by no prime
≤ X, it must be a product of primes > X. In particular, there exists a
prime > X.

14 Barnes’ proof

In 1976, Barnes published a new proof of the infinitude of primes using the
theory of periodic continued fractions and the theory of Pellian equations.

Let p1 = 2, p2 = 3, . . . , pt be all of the primes and P =
∏t

i=1 pi, Q =
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15 BRAUN’S PROOF 8

∏t
i=2 pi. Consider the continued fraction x = [p, p, . . .]. Then we have

x = (P +
√
P 2 + 4)/2 = Q+

√
Q2 + 1.

Now Q2 + 1 must be a power of two and therefore Q2 + 1 = 22l+1

or Q2 − 2(2l)2 = −1. This means that Q/2l is an even approximant of
[1, 2, 2, . . .], the continued fraction for

√
2. Denote the dinominator of the

approximants by Bm. Thus we have B0 = 1, B1 = 2, Bm+1 = 2Bm + Bm−1

and Bm must be odd for even m. Thus l = 0 and Q = 1. This is a
contradiction.

Of course Q2 + 1 cannot be a power of two since Q2 + 1 > 2 and Q2 + 1
cannot be divisible by 4.

15 Braun’s proof

Suppose that there exist only t primes p1, p2, . . . , pt and consider the sum
m/n =

∑t
i=1 1/pi. Now 1/2+1/3+1/5 > 1, so that m/n > 1 and therefore

m > n ≥ 1. Thus m must have a prime factor pi. However, no pi can divide
m since pi | m implies pi | p1p2 · · · pi−1pi+1 · · · pt. This is a contradiction.

16 Harris’ proof

Let A0, A1, A2 be positive and pairwise coprime integers, and for n ≥ 3 set
An = A0A1 · · ·An−3An−1 +An−2. Now we can show that A0, A1, . . . , An are
pairwise coprime by induction; p | gcd(An, An−2) implies p | gcd(An−i, An−2)
for some i ≥ 1, i 6= 2 and p | gcd(An, An−j) for some j ≥ 1, j 6= 2 implies
p | gcd(An−j, An−2). Since An > 1 at least for n ≥ 3, we see that A0, A1, . . .
contains an infinite set of integers > 1 no two of which has a common prime
factor. Therefore the number of primes is infinite.

We note that taking the sequence bi(i ≥ 0) such that A0 = b0, A1 =
b0b1 + 1, A2 = b0b1b2 + b0 + b2 and bn = A0A1 · · ·An−3, An is the numerator
of approximants of the regular infinite continued fraction [b0, b1, b2, . . .].

17 Chernoff’s proof

Chernoff’s proof uses only a simple enumerating argument. Suppose that
there are only k primes p1, p2, . . . , pk. If N is any positive integer, there
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are exactly N k-tuples of nonnegative integers (e1, e2, . . . , ek) satisfying the
inequality pe1

1 p
e2
2 · · · p

ek
k ≤ N , or, equivalently, e1 log p1 + e2 log p2 + · · · +

ek log pk ≤ logN . The number of such k-tuples is
(logN)k/(k! log p1 log p2 · · · log pk). Therefore N ≤ c(logN)k for some con-
stant c, which is clearly false. Thus there are infinitely many primes.

We note that we need not use the uniqueness of prime factorization;
the fact suffices that there are at most N k-tuples of nonnegative integers
(e1, e2, . . . , ek) satisfying the above inequality.

Moreover, the argument works even if we suppose that there are only k
primes p1, p2, . . . , pk below N . We can take c = 1/(k! log 2) and therefore
N ≤ (logN)k/(k! log 2). This gives k > c′(logN) for some positive constant
c′.
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